Remove the victor-dmm device driver. Its functionality is contained in
the Victor specific serial-over-HID transport, the FS9922 DMM parser,
and the serial-dmm device driver. The additional implementation became
obsolete.
Introduce a serial transport which undoes the Victor DMM cable's
obfuscation to the DMM chip's original data packet. Which allows to
re-use the existing FS9922 support code, obsoleting the victor-dmm
device driver.
Remove the src/hardware/brymen-bm86x/ hierarchy of source files. Its
functionality has moved to the bm86x packet parser and the serial-dmm
device driver.
Move Brymen BM86x specific packet parse logic to a new src/dmm/bm86x.c
source file, and register the routines with the serial-dmm driver's list
of supported devices. Which obsoletes the src/hardware/brymen-bm86x/
hierarchy.
This implementation differs from the previous version: The parse routine
gets called multiple times after one DMM packet was received. Values for
the displays get extracted in separate invocations, the received packet
is considered read-only. Unsupported LCD segment combinations for digits
get logged. Low battery gets logged with higher severity -- the validity
of measurement values is uncertain after all. The parse routine uses
longer identifiers. Packet reception uses whichever serial transport is
available (need no longer be strictly USB HID nor libusb based). All
features of the previous implementation are believed to still be present
in this version.
This configuration queries measurement values each 0.5 seconds and
re-sends a not responded to request after 1.5 seconds. Which follows the
combination of the vendor's suggested flow (frequency) and the previous
implementation's timeout (3x 500ms). This implementation does not try to
re-connect to the HID device for each measurement, and neither checks
for the 4.0 seconds timeout (vendor's suggested flow). Local experiments
work without these.
The Brymen BU-86X infrared adapters are sold with BM869s meters. Raw
streams of data bytes get communicated by means of HID reports with
report number 0 and up to 8 data bytes each. Communication parameters
are fixed and need no configuration.
Keep the ES51919 chip support in the src/lcr/ directory, and move device
driver specific code to the src/hardware/serial-lcr/ directory. Implement
the same driver layout for LCR meters as is used for DMM devices.
This also addresses a few issues in the serial-lcr driver: Unbreak --get
and --show, do process a few LCR packets after probing the device, to
gather current parameter values. Keep sending meta packets when these
parameters change during acquisition, like the previous implementation
did. Use common code for frame/time limits.
Note that although LCR meters usually operate with AC to classify L/C/R
components, one of the officially supported modes is DC resistance.
Which means that an output frequency of 0 is not just a fallback when
packet parsing fails, it's also a regular value of the freq parameter.
List all supported frequencies including DC in strict numerical order.
Although all currently supported devices use the same ES51919 chip, the
implementation is prepared to support other devices which use different
LCR meter chips as well. The list of known equivalent circuit models and
output frequencies is kept in src/lcr/ chip support. It's assumed that
one LCR packet communicates the data for all channels/displays similar
to the serial-dmm driver implementation.
Introduce the serial_bt.c source file which implements the methods of a
serial transport and calls into the platform agnostic src/bt/ support
code.
Implement support for several chips and modules: RFCOMM (BT classic,
tested with HC-05), BLE122 (tested with 121GW), Nordic nRF51, and TI
CC254x (the latter untested). Read support is assumed to be complete,
write support for BLE may be incomplete due to lack of access to
hardware for tests.
Create a src/bt/ subdirectory for source files. Declare a platform
agnostic internal API for Bluetooth communication, and provide an
implementation of that portable API when the BlueZ library is available.
This implementation assumes that HAVE_BLUETOOTH and HAVE_LIBBLUEZ can be
used interchangeably, which is true for this initial version. When
support for other platforms gets added, the common and the specific
parts need to get sorted. Trying that now would involve guessing. :)
Search for the optional HIDAPI library. Call the library's init and exit
routine, and print version information. Extend the common serial layer's
code paths for open, list, and find USB to also support serial over HID.
This commit prepares serial over HID, but the HIDAPI specific transport
for serial communication still is empty in this implementation.
Introduce a new serial_libsp.c source file, and move code from serial.c
there which is specific to libserialport. Keep the existing serial.c API
in place, this is a pure internal refactoring.
Adjust a little whitespace while we are here. Rearrange long lines to
keep related parameter groups adjacent (like pointer and size, or UART
frame length and flow control). Consistently reduce indentation of
continuation lines.
Explicitly use SRCDIR and BUILDDIR in Doxyfile files to reference input
files. This seems to be a sufficient fix for an issue where the build
would fail when libsigrok/ was located in a directory that was a symlink.
This fixes bug #547.
Introduce the dmm/eev121gw.c source file with parse routines for the
EEVblog 121GW meter's 19-bytes binary packets. Get the values and MQ
properties of the device's several displays (main, sub, bar) in several
individual parse calls.
This commit introduces initial support for the device. Some of the modes
and features are untested, as are some of the device's ranges.
Use "ipdbg-la" everywhere to refer to the driver, including
in function name prefixes etc. There's no need to encode
website details (.org) into the driver/function name(s).
This ensures that SCPI read/write/write+read operations are thread safe.
F.e.: If a write operation expects a return value (in other words: a
read operation), it is not allowed to be interrupted by another write
operation.
To simplify things, the SCPI helper functions are moved from
scpi/helpers.c to scpi/scpi.c and also are renamed to fit the naming
scheme.
libgpib in particular will abort the program execution in case of
concurrent operations.
Implement an input module for .lpf files, the "LogicPort File" format of
the Intronix LA1034 vendor software. This version supports wires with
enabled and inverted state, compressed samples, signal names, signal
groups (but not multiple assignment), and automatic format detection.
The logic which determines whether "the file header" was completely
received, and sample data can get sent to the session, implements an
assumption in the absence of a better and more reliable condition.
Invalid input gets rejected, but diagnostics is rather limited. Since
all channels get to be the member of a channel group, either specified
by the user in the input file, or arranged for in the input module, the
"missing separator" part of bug 1186 has become obsolete.
[Note: This patch is basically a squashed version of the initial driver
commits by Andreas Zschunke <andreas.zschunke@gmx.net>, two fixes by
Andrej Valek <andy@skyrain.eu>, and various coding style / cosmetic
fixes by Uwe Hermann <uwe@hermann-uwe.de> to make the driver a lot more
consistent with the rest of the libsigrok code-base.]
BeagleLogic now supports two modes of interface - one being the
native mode running on an ARM system like the BeagleBone Black
and the other mode acting like a TCP client for the BeagleLogic
server running off a BeagleBone compatible system. This makes it
convenient for desktop users to retrieve samples from BeagleLogic,
no more copying files and SSHing into the BeagleBone hardware in
order to use BeagleLogic.
Signed-off-by: Kumar Abhishek <abhishek@theembeddedkitchen.net>
The code earlier was in a single .h file, so it's now separated into a C file
and H file
Signed-off-by: Kumar Abhishek <abhishek@theembeddedkitchen.net>
Previously the USB communication code was split between api.ci,
dslogic.c and protocol.c, with protocol internals split between
both. This patch puts all the protocol handling code into one
source file reducing the number of internal interfaces and making
the code more readable.
File template by Stefan Brüns, thanks!
This fixes bug #857.
(the XML file is moved from PulseView to libsigrok since this is not
PulseView-specific)
Add a 48x48 PNG and a scalable SVG for the MIME type as well.
Install the XML file and in the icons in the respective standard paths.
This is more specific and prevents any potential issues e.g. when
multiple distro packages might ship with a generic file like
sigrok-logo-notext.png that's supposed to be installed in the same place.
Change uninstall-local to uninstall-hook, since the latter is guaranteed
to run last (order is apparently not guaranteed for uninstall-local).
This fixes bug #861.