/* * This file is part of the libsigrok project. * * Copyright (C) 2015 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include "lib.h" /* * This test sequence cannot use internal helpers, since it's limited * to the library's public API (by design). That is why there are local * helper routines for endianess handling. */ static int host_be; static void get_host_endianess(void) { int x; uint8_t *p; p = (void *)&x; x = 1; host_be = *p ? 0 : 1; } static void swap_bytes(uint8_t *buff, size_t blen) { size_t idx; uint8_t tmp; for (idx = 0; idx < blen / 2; idx++) { tmp = buff[blen - 1 - idx]; buff[blen - 1 - idx] = buff[idx]; buff[idx] = tmp; } } static int sr_analog_init_(struct sr_datafeed_analog *analog, struct sr_analog_encoding *encoding, struct sr_analog_meaning *meaning, struct sr_analog_spec *spec, int digits) { memset(analog, 0, sizeof(*analog)); memset(encoding, 0, sizeof(*encoding)); memset(meaning, 0, sizeof(*meaning)); memset(spec, 0, sizeof(*spec)); analog->encoding = encoding; analog->meaning = meaning; analog->spec = spec; encoding->unitsize = sizeof(float); encoding->is_float = TRUE; #ifdef WORDS_BIGENDIAN encoding->is_bigendian = TRUE; #else encoding->is_bigendian = FALSE; #endif encoding->digits = digits; encoding->is_digits_decimal = TRUE; encoding->scale.p = 1; encoding->scale.q = 1; encoding->offset.p = 0; encoding->offset.q = 1; spec->spec_digits = digits; return SR_OK; } START_TEST(test_analog_to_float) { int ret; unsigned int i; float f, fout; struct sr_channel ch; struct sr_datafeed_analog analog; struct sr_analog_encoding encoding; struct sr_analog_meaning meaning; struct sr_analog_spec spec; const float v[] = {-12.9, -333.999, 0, 3.1415, 29.7, 989898.121212}; sr_analog_init_(&analog, &encoding, &meaning, &spec, 3); analog.num_samples = 1; analog.data = &f; meaning.channels = g_slist_append(NULL, &ch); for (i = 0; i < ARRAY_SIZE(v); i++) { fout = 19; f = v[i]; ret = sr_analog_to_float(&analog, &fout); fail_unless(ret == SR_OK, "sr_analog_to_float() failed: %d.", ret); fail_unless(fabs(f - fout) <= 0.001, "%f != %f", f, fout); } } END_TEST START_TEST(test_analog_to_float_null) { int ret; float f, fout; struct sr_datafeed_analog analog; struct sr_analog_encoding encoding; struct sr_analog_meaning meaning; struct sr_analog_spec spec; f = G_PI; sr_analog_init_(&analog, &encoding, &meaning, &spec, 3); analog.num_samples = 1; analog.data = &f; ret = sr_analog_to_float(NULL, &fout); fail_unless(ret == SR_ERR_ARG); ret = sr_analog_to_float(&analog, NULL); fail_unless(ret == SR_ERR_ARG); ret = sr_analog_to_float(NULL, NULL); fail_unless(ret == SR_ERR_ARG); analog.data = NULL; ret = sr_analog_to_float(&analog, &fout); fail_unless(ret == SR_ERR_ARG); analog.data = &f; analog.meaning = NULL; ret = sr_analog_to_float(&analog, &fout); fail_unless(ret == SR_ERR_ARG); analog.meaning = &meaning; analog.encoding = NULL; ret = sr_analog_to_float(&analog, &fout); fail_unless(ret == SR_ERR_ARG); analog.encoding = &encoding; } END_TEST START_TEST(test_analog_to_float_conv) { static const int with_diag = 0; struct { const char *desc; void *bytes; size_t nums, unit; int is_fp, is_sign, is_be; int scale, offset; float *want; } *item, items[] = { /* Test to cover multiple values in an array, odd numbers. */ { .desc = "float single input, native, value array", .bytes = (float[]){ -12.9, -333.999, 0, 3.14, 29.7, 9898.12, }, .nums = 6, .unit = sizeof(float), .is_fp = TRUE, .is_sign = FALSE, .is_be = host_be, .scale = 1, .offset = 0, .want = (float[]){ -12.9, -333.999, 0, 3.14, 29.7, 9898.12, }, }, /* Tests to cover floating point input data conversion. */ { .desc = "float single input, native", .bytes = (float[]){ 1.0, 2.0, 3.0, 4.0, }, .nums = 4, .unit = sizeof(float), .is_fp = TRUE, .is_sign = FALSE, .is_be = host_be, .scale = 1, .offset = 0, .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, }, { .desc = "float single input, big endian", .bytes = (float[]){ 1.0, 2.0, 3.0, 4.0, }, .nums = 4, .unit = sizeof(float), .is_fp = TRUE, .is_sign = FALSE, .is_be = TRUE, .scale = 1, .offset = 0, .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, }, { .desc = "float single input, little endian", .bytes = (float[]){ 1.0, 2.0, 3.0, 4.0, }, .nums = 4, .unit = sizeof(float), .is_fp = TRUE, .is_sign = FALSE, .is_be = FALSE, .scale = 1, .offset = 0, .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, }, { .desc = "float double input, native", .bytes = (double[]){ 1.0, 2.0, 3.0, 4.0, }, .nums = 4, .unit = sizeof(double), .is_fp = TRUE, .is_sign = FALSE, .is_be = host_be, .scale = 1, .offset = 0, .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, }, { .desc = "float half input, unsupported, fake bytes", .bytes = (uint16_t[]){ 0x1234, 0x5678, }, .nums = 2, .unit = sizeof(uint16_t), .is_fp = TRUE, .is_sign = FALSE, .is_be = host_be, .want = NULL, }, { .desc = "float quad input, unsupported, fake bytes", .bytes = (uint64_t[]){ 0x0, 0x0, }, .nums = 1, .unit = 2 * sizeof(uint64_t), .is_fp = TRUE, .is_sign = FALSE, .is_be = host_be, .want = NULL, }, /* Tests to cover integer input data conversion. */ { .desc = "int u8 input", .bytes = (uint8_t[]){ 1, 2, 3, 4, }, .nums = 4, .unit = sizeof(uint8_t), .is_fp = FALSE, .is_sign = FALSE, .is_be = host_be, .scale = 1, .offset = 0, .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, }, { .desc = "int i8 input", .bytes = (int8_t[]){ -1, 2, -3, 4, }, .nums = 4, .unit = sizeof(int8_t), .is_fp = FALSE, .is_sign = TRUE, .is_be = host_be, .scale = 1, .offset = 0, .want = (float[]){ -1.0, 2.0, -3.0, 4.0, }, }, { .desc = "int u16 input, big endian", .bytes = (uint16_t[]){ 1, 2, 3, 4, }, .nums = 4, .unit = sizeof(uint16_t), .is_fp = FALSE, .is_sign = FALSE, .is_be = TRUE, .scale = 1, .offset = 0, .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, }, { .desc = "int u16 input, little endian", .bytes = (uint16_t[]){ 1, 2, 3, 4, }, .nums = 4, .unit = sizeof(uint16_t), .is_fp = FALSE, .is_sign = FALSE, .is_be = FALSE, .scale = 1, .offset = 0, .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, }, { .desc = "int i16 input, big endian", .bytes = (int16_t[]){ 1, -2, 3, -4, }, .nums = 4, .unit = sizeof(int16_t), .is_fp = FALSE, .is_sign = TRUE, .is_be = TRUE, .scale = 1, .offset = 0, .want = (float[]){ 1.0, -2.0, 3.0, -4.0, }, }, { .desc = "int i16 input, little endian", .bytes = (int16_t[]){ 1, -2, 3, -4, }, .nums = 4, .unit = sizeof(int16_t), .is_fp = FALSE, .is_sign = TRUE, .is_be = FALSE, .scale = 1, .offset = 0, .want = (float[]){ 1.0, -2.0, 3.0, -4.0, }, }, { .desc = "int u32 input, big endian", .bytes = (uint32_t[]){ 1, 2, 3, 4, }, .nums = 4, .unit = sizeof(uint32_t), .is_fp = FALSE, .is_sign = FALSE, .is_be = TRUE, .scale = 1, .offset = 0, .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, }, { .desc = "int u32 input, little endian", .bytes = (uint32_t[]){ 1, 2, 3, 4, }, .nums = 4, .unit = sizeof(uint32_t), .is_fp = FALSE, .is_sign = FALSE, .is_be = FALSE, .scale = 1, .offset = 0, .want = (float[]){ 1.0, 2.0, 3.0, 4.0, }, }, { .desc = "int i32 input, big endian", .bytes = (int32_t[]){ 1, 2, -3, -4, }, .nums = 4, .unit = sizeof(int32_t), .is_fp = FALSE, .is_sign = TRUE, .is_be = TRUE, .scale = 1, .offset = 0, .want = (float[]){ 1.0, 2.0, -3.0, -4.0, }, }, { .desc = "int i32 input, little endian", .bytes = (int32_t[]){ 1, 2, -3, -4, }, .nums = 4, .unit = sizeof(int32_t), .is_fp = FALSE, .is_sign = TRUE, .is_be = FALSE, .scale = 1, .offset = 0, .want = (float[]){ 1.0, 2.0, -3.0, -4.0, }, }, { .desc = "int u64 input, unsupported", .bytes = (uint64_t[]){ 1, 2, 3, 4, }, .nums = 4, .unit = sizeof(uint64_t), .is_fp = FALSE, .is_sign = FALSE, .is_be = TRUE, .want = NULL, }, /* Tests to cover scale/offset calculation. */ { .desc = "float single input, scale + offset", .bytes = (float[]){ 1.0, 2.0, 3.0, 4.0, }, .nums = 4, .unit = sizeof(float), .is_fp = TRUE, .is_sign = FALSE, .is_be = host_be, .scale = 3, .offset = 2, .want = (float[]){ 5.0, 8.0, 11.0, 14.0, }, }, { .desc = "int u8 input, scale + offset", .bytes = (uint8_t[]){ 1, 2, 3, 4, }, .nums = 4, .unit = sizeof(uint8_t), .is_fp = FALSE, .is_sign = FALSE, .is_be = TRUE, .scale = 3, .offset = 2, .want = (float[]){ 5.0, 8.0, 11.0, 14.0, }, }, }; const size_t max_floats = 6; struct sr_channel ch = { .index = 0, .enabled = TRUE, .type = SR_CHANNEL_LOGIC, .name = "input", }; size_t item_idx; char item_text[32]; struct sr_datafeed_analog analog; struct sr_analog_encoding encoding; struct sr_analog_meaning meaning; struct sr_analog_spec spec; size_t byte_count, value_idx; uint8_t f_in[max_floats * sizeof(double)], *byte_ptr; float f_out[max_floats]; int ret; float want, have; for (item_idx = 0; item_idx < ARRAY_SIZE(items); item_idx++) { item = &items[item_idx]; /* Construct "4x u32le" style test item identification. */ snprintf(item_text, sizeof(item_text), "%zu: %zux %c%zu%s", item_idx, item->nums, item->is_fp ? 'f' : item->is_sign ? 'i' : 'u', item->unit * 8, item->is_be ? "be" : "le"); if (with_diag) { fprintf(stderr, "%s -- %s", item_text, item->desc); fflush(stderr); } /* Copy input data bytes, optionally adjust endianess. */ byte_count = item->nums * item->unit; memcpy(f_in, item->bytes, byte_count); if (item->is_be != host_be) { byte_ptr = &f_in[0]; for (value_idx = 0; value_idx < item->nums; value_idx++) { swap_bytes(byte_ptr, item->unit); byte_ptr += item->unit; } } if (with_diag) { fprintf(stderr, " -- bytes:"); for (value_idx = 0; value_idx < byte_count; value_idx++) fprintf(stderr, " %02x", f_in[value_idx]); fflush(stderr); } /* Setup the analog feed description. */ sr_analog_init_(&analog, &encoding, &meaning, &spec, 3); analog.num_samples = item->nums; analog.data = &f_in[0]; encoding.unitsize = item->unit; encoding.is_float = item->is_fp; encoding.is_signed = item->is_sign; encoding.is_bigendian = item->is_be; encoding.scale.p = item->scale ? item->scale : 1; encoding.offset.p = item->offset; meaning.channels = g_slist_append(NULL, &ch); /* Convert to an array of single precision float values. */ ret = sr_analog_to_float(&analog, &f_out[0]); if (!item->want) { fail_if(ret == SR_OK, "%s: sr_analog_to_float() passed", item_text); if (with_diag) { fprintf(stderr, " -- expected fail, OK\n"); fflush(stderr); } continue; } fail_unless(ret == SR_OK, "%s: sr_analog_to_float() failed: %d", item_text, ret); if (with_diag) { fprintf(stderr, " -- float:"); for (value_idx = 0; value_idx < item->nums; value_idx++) fprintf(stderr, " %f", f_out[value_idx]); fprintf(stderr, "\n"); fflush(stderr); } /* * Compare result data to the expectation. No tolerance * is required here due to the input set's values. This * test concentrates on endianess / data type / bit count * conversion and simple scale/offset calculation, neither * on precision nor rounding nor truncation. */ for (value_idx = 0; value_idx < item->nums; value_idx++) { want = item->want[value_idx]; have = f_out[value_idx]; fail_unless(want == have, "%s: input %f != output %f", item_text, want, have); } } } END_TEST START_TEST(test_analog_si_prefix) { struct { float input_value; int input_digits; float output_value; int output_digits; const char *output_si_prefix; } v[] = { { 12.0 , 0, 12.0 , 0, "" }, { 12.0 , 1, 12.0 , 1, "" }, { 12.0 , -1, 0.012, 2, "k" }, { 1024.0 , 0, 1.024, 3, "k" }, { 1024.0 , -1, 1.024, 2, "k" }, { 1024.0 , -3, 1.024, 0, "k" }, { 12.0e5 , 0, 1.2, 6, "M" }, { 0.123456, 0, 0.123456, 0, "" }, { 0.123456, 1, 0.123456, 1, "" }, { 0.123456, 2, 0.123456, 2, "" }, { 0.123456, 3, 123.456, 0, "m" }, { 0.123456, 4, 123.456, 1, "m" }, { 0.123456, 5, 123.456, 2, "m" }, { 0.123456, 6, 123.456, 3, "m" }, { 0.123456, 7, 123.456, 4, "m" }, { 0.0123 , 4, 12.3, 1, "m" }, { 0.00123 , 5, 1.23, 2, "m" }, { 0.000123, 4, 0.123, 1, "m" }, { 0.000123, 5, 0.123, 2, "m" }, { 0.000123, 6, 123.0, 0, "µ" }, { 0.000123, 7, 123.0, 1, "µ" }, }; for (unsigned int i = 0; i < ARRAY_SIZE(v); i++) { float value = v[i].input_value; int digits = v[i].input_digits; const char *si_prefix = sr_analog_si_prefix(&value, &digits); fail_unless(fabs(value - v[i].output_value) <= 0.00001, "sr_analog_si_prefix() unexpected output value %f (i=%d).", value , i); fail_unless(digits == v[i].output_digits, "sr_analog_si_prefix() unexpected output digits %d (i=%d).", digits, i); fail_unless(!strcmp(si_prefix, v[i].output_si_prefix), "sr_analog_si_prefix() unexpected output prefix \"%s\" (i=%d).", si_prefix, i); } } END_TEST START_TEST(test_analog_si_prefix_null) { float value = 1.23; int digits = 1; const char *si_prefix; si_prefix = sr_analog_si_prefix(NULL, &digits); fail_unless(!strcmp(si_prefix, "")); si_prefix = sr_analog_si_prefix(&value, NULL); fail_unless(!strcmp(si_prefix, "")); si_prefix = sr_analog_si_prefix(NULL, NULL); fail_unless(!strcmp(si_prefix, "")); } END_TEST START_TEST(test_analog_unit_to_string) { int ret; unsigned int i; char *result; struct sr_datafeed_analog analog; struct sr_analog_encoding encoding; struct sr_analog_meaning meaning; struct sr_analog_spec spec; const int u[] = {SR_UNIT_VOLT, SR_UNIT_AMPERE, SR_UNIT_CELSIUS}; const int f[] = {SR_MQFLAG_RMS, 0, 0}; const char *r[] = {"V RMS", "A", "°C"}; sr_analog_init_(&analog, &encoding, &meaning, &spec, 3); for (i = 0; i < ARRAY_SIZE(r); i++) { meaning.unit = u[i]; meaning.mqflags = f[i]; ret = sr_analog_unit_to_string(&analog, &result); fail_unless(ret == SR_OK); fail_unless(result != NULL); fail_unless(!strcmp(result, r[i]), "%s != %s", result, r[i]); g_free(result); } } END_TEST START_TEST(test_analog_unit_to_string_null) { int ret; char *result; struct sr_datafeed_analog analog; struct sr_analog_encoding encoding; struct sr_analog_meaning meaning; struct sr_analog_spec spec; sr_analog_init_(&analog, &encoding, &meaning, &spec, 3); meaning.unit = SR_UNIT_VOLT; meaning.mqflags = SR_MQFLAG_RMS; ret = sr_analog_unit_to_string(NULL, &result); fail_unless(ret == SR_ERR_ARG); ret = sr_analog_unit_to_string(&analog, NULL); fail_unless(ret == SR_ERR_ARG); ret = sr_analog_unit_to_string(NULL, NULL); fail_unless(ret == SR_ERR_ARG); analog.meaning = NULL; ret = sr_analog_unit_to_string(&analog, &result); fail_unless(ret == SR_ERR_ARG); } END_TEST START_TEST(test_set_rational) { unsigned int i; struct sr_rational r; const int64_t p[] = {0, 1, -5, INT64_MAX}; const uint64_t q[] = {0, 2, 7, UINT64_MAX}; for (i = 0; i < ARRAY_SIZE(p); i++) { sr_rational_set(&r, p[i], q[i]); fail_unless(r.p == p[i] && r.q == q[i]); } } END_TEST START_TEST(test_set_rational_null) { sr_rational_set(NULL, 5, 7); } END_TEST START_TEST(test_cmp_rational) { const struct sr_rational r[] = { { 1, 1 }, { 2, 2 }, { 1000, 1000 }, { INT64_MAX, INT64_MAX }, { 1, 4 }, { 2, 8 }, { INT64_MAX, UINT64_MAX }, { INT64_MIN, UINT64_MAX }, }; fail_unless(sr_rational_eq(&r[0], &r[0]) == 1); fail_unless(sr_rational_eq(&r[0], &r[1]) == 1); fail_unless(sr_rational_eq(&r[1], &r[2]) == 1); fail_unless(sr_rational_eq(&r[2], &r[3]) == 1); fail_unless(sr_rational_eq(&r[3], &r[3]) == 1); fail_unless(sr_rational_eq(&r[4], &r[4]) == 1); fail_unless(sr_rational_eq(&r[4], &r[5]) == 1); fail_unless(sr_rational_eq(&r[5], &r[5]) == 1); fail_unless(sr_rational_eq(&r[6], &r[6]) == 1); fail_unless(sr_rational_eq(&r[7], &r[7]) == 1); fail_unless(sr_rational_eq(&r[1], &r[4]) == 0); } END_TEST START_TEST(test_mult_rational) { const struct sr_rational r[][3] = { /* a * b = c */ { { 1, 1 }, { 1, 1 }, { 1, 1 }}, { { 2, 1 }, { 3, 1 }, { 6, 1 }}, { { 1, 2 }, { 2, 1 }, { 1, 1 }}, /* Test negative numbers */ { { -1, 2 }, { 2, 1 }, { -1, 1 }}, { { -1, 2 }, { -2, 1 }, { 1, 1 }}, { { -(1ll<<20), (1ll<<10) }, { -(1ll<<20), 1 }, { (1ll<<30), 1 }}, /* Test reduction */ { { INT32_MAX, (1ll<<12) }, { (1<<2), 1 }, { INT32_MAX, (1ll<<10) }}, { { INT64_MAX, (1ll<<63) }, { (1<<3), 1 }, { INT64_MAX, (1ll<<60) }}, /* Test large numbers */ { { (1ll<<40), (1ll<<10) }, { (1ll<<30), 1 }, { (1ll<<60), 1 }}, { { -(1ll<<40), (1ll<<10) }, { -(1ll<<30), 1 }, { (1ll<<60), 1 }}, { { 1000, 1 }, { 8000, 1 }, { 8000000, 1 }}, { { 10000, 1 }, { 80000, 1 }, { 800000000, 1 }}, { { 10000*3, 4 }, { 80000*3, 1 }, { 200000000*9, 1 }}, { { 1, 1000 }, { 1, 8000 }, { 1, 8000000 }}, { { 1, 10000 }, { 1, 80000 }, { 1, 800000000 }}, { { 4, 10000*3 }, { 1, 80000*3 }, { 1, 200000000*9 }}, { { -10000*3, 4 }, { 80000*3, 1 }, { -200000000*9, 1 }}, { { 10000*3, 4 }, { -80000*3, 1 }, { -200000000*9, 1 }}, }; for (unsigned i = 0; i < ARRAY_SIZE(r); i++) { struct sr_rational res; int rc = sr_rational_mult(&res, &r[i][0], &r[i][1]); fail_unless(rc == SR_OK); fail_unless(sr_rational_eq(&res, &r[i][2]) == 1, "sr_rational_mult() failed: [%d] %ld/%lu != %ld/%lu.", i, res.p, res.q, r[i][2].p, r[i][2].q); } } END_TEST START_TEST(test_div_rational) { const struct sr_rational r[][3] = { /* a * b = c */ { { 1, 1 }, { 1, 1 }, { 1, 1 }}, { { 2, 1 }, { 1, 3 }, { 6, 1 }}, { { 1, 2 }, { 1, 2 }, { 1, 1 }}, /* Test negative numbers */ { { -1, 2 }, { 1, 2 }, { -1, 1 }}, { { -1, 2 }, { -1, 2 }, { 1, 1 }}, { { -(1ll<<20), (1ll<<10) }, { -1, (1ll<<20) }, { (1ll<<30), 1 }}, /* Test reduction */ { { INT32_MAX, (1ll<<12) }, { 1, (1<<2) }, { INT32_MAX, (1ll<<10) }}, { { INT64_MAX, (1ll<<63) }, { 1, (1<<3) }, { INT64_MAX, (1ll<<60) }}, /* Test large numbers */ { { (1ll<<40), (1ll<<10) }, { 1, (1ll<<30) }, { (1ll<<60), 1 }}, { { -(1ll<<40), (1ll<<10) }, { -1, (1ll<<30) }, { (1ll<<60), 1 }}, { { 10000*3, 4 }, { 1, 80000*3 }, { 200000000*9, 1 }}, { { 4, 10000*3 }, { 80000*3, 1 }, { 1, 200000000*9 }}, { { -10000*3, 4 }, { 1, 80000*3 }, { -200000000*9, 1 }}, { { 10000*3, 4 }, { -1, 80000*3 }, { -200000000*9, 1 }}, }; for (unsigned i = 0; i < ARRAY_SIZE(r); i++) { struct sr_rational res; int rc = sr_rational_div(&res, &r[i][0], &r[i][1]); fail_unless(rc == SR_OK); fail_unless(sr_rational_eq(&res, &r[i][2]) == 1, "sr_rational_mult() failed: [%d] %ld/%lu != %ld/%lu.", i, res.p, res.q, r[i][2].p, r[i][2].q); } { struct sr_rational res; int rc = sr_rational_div(&res, &r[0][0], &((struct sr_rational){ 0, 5 })); fail_unless(rc == SR_ERR_ARG); } } END_TEST Suite *suite_analog(void) { Suite *s; TCase *tc; get_host_endianess(); s = suite_create("analog"); tc = tcase_create("analog_to_float"); tcase_add_test(tc, test_analog_to_float); tcase_add_test(tc, test_analog_to_float_null); tcase_add_test(tc, test_analog_to_float_conv); suite_add_tcase(s, tc); tc = tcase_create("analog_si_unit"); tcase_add_test(tc, test_analog_si_prefix); tcase_add_test(tc, test_analog_si_prefix_null); tcase_add_test(tc, test_analog_unit_to_string); tcase_add_test(tc, test_analog_unit_to_string_null); suite_add_tcase(s, tc); tc = tcase_create("analog_rational"); tcase_add_test(tc, test_set_rational); tcase_add_test(tc, test_set_rational_null); tcase_add_test(tc, test_cmp_rational); tcase_add_test(tc, test_mult_rational); tcase_add_test(tc, test_div_rational); suite_add_tcase(s, tc); return s; }