/* * This file is part of the sigrok project. * * Copyright (C) 2013 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "protocol.h" extern SR_PRIV struct sr_dev_driver ols_driver_info; static struct sr_dev_driver *di = &ols_driver_info; SR_PRIV int send_shortcommand(struct sr_serial_dev_inst *serial, uint8_t command) { char buf[1]; sr_dbg("Sending cmd 0x%.2x.", command); buf[0] = command; if (serial_write(serial, buf, 1) != 1) return SR_ERR; return SR_OK; } SR_PRIV int send_longcommand(struct sr_serial_dev_inst *serial, uint8_t command, uint32_t data) { char buf[5]; sr_dbg("Sending cmd 0x%.2x data 0x%.8x.", command, data); buf[0] = command; buf[1] = (data & 0xff000000) >> 24; buf[2] = (data & 0xff0000) >> 16; buf[3] = (data & 0xff00) >> 8; buf[4] = data & 0xff; if (serial_write(serial, buf, 5) != 5) return SR_ERR; return SR_OK; } SR_PRIV int ols_configure_probes(const struct sr_dev_inst *sdi) { struct dev_context *devc; const struct sr_probe *probe; const GSList *l; int probe_bit, stage, i; char *tc; devc = sdi->priv; devc->probe_mask = 0; for (i = 0; i < NUM_TRIGGER_STAGES; i++) { devc->trigger_mask[i] = 0; devc->trigger_value[i] = 0; } devc->num_stages = 0; for (l = sdi->probes; l; l = l->next) { probe = (const struct sr_probe *)l->data; if (!probe->enabled) continue; /* * Set up the probe mask for later configuration into the * flag register. */ probe_bit = 1 << (probe->index); devc->probe_mask |= probe_bit; if (!probe->trigger) continue; /* Configure trigger mask and value. */ stage = 0; for (tc = probe->trigger; tc && *tc; tc++) { devc->trigger_mask[stage] |= probe_bit; if (*tc == '1') devc->trigger_value[stage] |= probe_bit; stage++; if (stage > 3) /* * TODO: Only supporting parallel mode, with * up to 4 stages. */ return SR_ERR; } if (stage > devc->num_stages) devc->num_stages = stage; } return SR_OK; } SR_PRIV uint32_t reverse16(uint32_t in) { uint32_t out; out = (in & 0xff) << 8; out |= (in & 0xff00) >> 8; out |= (in & 0xff0000) << 8; out |= (in & 0xff000000) >> 8; return out; } SR_PRIV uint32_t reverse32(uint32_t in) { uint32_t out; out = (in & 0xff) << 24; out |= (in & 0xff00) << 8; out |= (in & 0xff0000) >> 8; out |= (in & 0xff000000) >> 24; return out; } SR_PRIV struct dev_context *ols_dev_new(void) { struct dev_context *devc; if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) { sr_err("Device context malloc failed."); return NULL; } devc->trigger_at = -1; devc->probe_mask = 0xffffffff; devc->cur_samplerate = SR_KHZ(200); devc->serial = NULL; return devc; } SR_PRIV struct sr_dev_inst *get_metadata(struct sr_serial_dev_inst *serial) { struct sr_dev_inst *sdi; struct dev_context *devc; struct sr_probe *probe; uint32_t tmp_int, ui; uint8_t key, type, token; GString *tmp_str, *devname, *version; guchar tmp_c; sdi = sr_dev_inst_new(0, SR_ST_INACTIVE, NULL, NULL, NULL); sdi->driver = di; devc = ols_dev_new(); sdi->priv = devc; devname = g_string_new(""); version = g_string_new(""); key = 0xff; while (key) { if (serial_read(serial, &key, 1) != 1 || key == 0x00) break; type = key >> 5; token = key & 0x1f; switch (type) { case 0: /* NULL-terminated string */ tmp_str = g_string_new(""); while (serial_read(serial, &tmp_c, 1) == 1 && tmp_c != '\0') g_string_append_c(tmp_str, tmp_c); sr_dbg("Got metadata key 0x%.2x value '%s'.", key, tmp_str->str); switch (token) { case 0x01: /* Device name */ devname = g_string_append(devname, tmp_str->str); break; case 0x02: /* FPGA firmware version */ if (version->len) g_string_append(version, ", "); g_string_append(version, "FPGA version "); g_string_append(version, tmp_str->str); break; case 0x03: /* Ancillary version */ if (version->len) g_string_append(version, ", "); g_string_append(version, "Ancillary version "); g_string_append(version, tmp_str->str); break; default: sr_info("ols: unknown token 0x%.2x: '%s'", token, tmp_str->str); break; } g_string_free(tmp_str, TRUE); break; case 1: /* 32-bit unsigned integer */ if (serial_read(serial, &tmp_int, 4) != 4) break; tmp_int = reverse32(tmp_int); sr_dbg("Got metadata key 0x%.2x value 0x%.8x.", key, tmp_int); switch (token) { case 0x00: /* Number of usable probes */ for (ui = 0; ui < tmp_int; ui++) { if (!(probe = sr_probe_new(ui, SR_PROBE_LOGIC, TRUE, ols_probe_names[ui]))) return 0; sdi->probes = g_slist_append(sdi->probes, probe); } break; case 0x01: /* Amount of sample memory available (bytes) */ devc->max_samples = tmp_int; break; case 0x02: /* Amount of dynamic memory available (bytes) */ /* what is this for? */ break; case 0x03: /* Maximum sample rate (hz) */ devc->max_samplerate = tmp_int; break; case 0x04: /* protocol version */ devc->protocol_version = tmp_int; break; default: sr_info("Unknown token 0x%.2x: 0x%.8x.", token, tmp_int); break; } break; case 2: /* 8-bit unsigned integer */ if (serial_read(serial, &tmp_c, 1) != 1) break; sr_dbg("Got metadata key 0x%.2x value 0x%.2x.", key, tmp_c); switch (token) { case 0x00: /* Number of usable probes */ for (ui = 0; ui < tmp_c; ui++) { if (!(probe = sr_probe_new(ui, SR_PROBE_LOGIC, TRUE, ols_probe_names[ui]))) return 0; sdi->probes = g_slist_append(sdi->probes, probe); } break; case 0x01: /* protocol version */ devc->protocol_version = tmp_c; break; default: sr_info("Unknown token 0x%.2x: 0x%.2x.", token, tmp_c); break; } break; default: /* unknown type */ break; } } sdi->model = devname->str; sdi->version = version->str; g_string_free(devname, FALSE); g_string_free(version, FALSE); return sdi; } SR_PRIV int ols_set_samplerate(const struct sr_dev_inst *sdi, const uint64_t samplerate) { struct dev_context *devc; devc = sdi->priv; if (devc->max_samplerate && samplerate > devc->max_samplerate) return SR_ERR_SAMPLERATE; if (samplerate > CLOCK_RATE) { devc->flag_reg |= FLAG_DEMUX; devc->cur_samplerate_divider = (CLOCK_RATE * 2 / samplerate) - 1; } else { devc->flag_reg &= ~FLAG_DEMUX; devc->cur_samplerate_divider = (CLOCK_RATE / samplerate) - 1; } /* Calculate actual samplerate used and complain if it is different * from the requested. */ devc->cur_samplerate = CLOCK_RATE / (devc->cur_samplerate_divider + 1); if (devc->flag_reg & FLAG_DEMUX) devc->cur_samplerate *= 2; if (devc->cur_samplerate != samplerate) sr_info("Can't match samplerate %" PRIu64 ", using %" PRIu64 ".", samplerate, devc->cur_samplerate); return SR_OK; } SR_PRIV void abort_acquisition(const struct sr_dev_inst *sdi) { struct sr_datafeed_packet packet; struct dev_context *devc; devc = sdi->priv; sr_source_remove(devc->serial->fd); /* Terminate session */ packet.type = SR_DF_END; sr_session_send(sdi, &packet); } SR_PRIV int ols_receive_data(int fd, int revents, void *cb_data) { struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; struct sr_dev_inst *sdi; struct drv_context *drvc; struct dev_context *devc; GSList *l; uint32_t sample; int num_channels, offset, i, j; unsigned char byte; drvc = di->priv; /* Find this device's devc struct by its fd. */ devc = NULL; for (l = drvc->instances; l; l = l->next) { sdi = l->data; devc = sdi->priv; if (devc->serial->fd == fd) break; devc = NULL; } if (!devc) /* Shouldn't happen. */ return TRUE; if (devc->num_transfers++ == 0) { /* * First time round, means the device started sending data, * and will not stop until done. If it stops sending for * longer than it takes to send a byte, that means it's * finished. We'll double that to 30ms to be sure... */ sr_source_remove(fd); sr_source_add(fd, G_IO_IN, 30, ols_receive_data, cb_data); devc->raw_sample_buf = g_try_malloc(devc->limit_samples * 4); if (!devc->raw_sample_buf) { sr_err("Sample buffer malloc failed."); return FALSE; } /* fill with 1010... for debugging */ memset(devc->raw_sample_buf, 0x82, devc->limit_samples * 4); } num_channels = 0; for (i = 0x20; i > 0x02; i /= 2) { if ((devc->flag_reg & i) == 0) num_channels++; } if (revents == G_IO_IN) { if (serial_read(devc->serial, &byte, 1) != 1) return FALSE; /* Ignore it if we've read enough. */ if (devc->num_samples >= devc->limit_samples) return TRUE; devc->sample[devc->num_bytes++] = byte; sr_dbg("Received byte 0x%.2x.", byte); if (devc->num_bytes == num_channels) { /* Got a full sample. */ sample = devc->sample[0] | (devc->sample[1] << 8) \ | (devc->sample[2] << 16) | (devc->sample[3] << 24); sr_dbg("Received sample 0x%.*x.", devc->num_bytes * 2, sample); if (devc->flag_reg & FLAG_RLE) { /* * In RLE mode -1 should never come in as a * sample, because bit 31 is the "count" flag. */ if (devc->sample[devc->num_bytes - 1] & 0x80) { devc->sample[devc->num_bytes - 1] &= 0x7f; /* * FIXME: This will only work on * little-endian systems. */ devc->rle_count = sample; sr_dbg("RLE count: %d.", devc->rle_count); devc->num_bytes = 0; return TRUE; } } devc->num_samples += devc->rle_count + 1; if (devc->num_samples > devc->limit_samples) { /* Save us from overrunning the buffer. */ devc->rle_count -= devc->num_samples - devc->limit_samples; devc->num_samples = devc->limit_samples; } if (num_channels < 4) { /* * Some channel groups may have been turned * off, to speed up transfer between the * hardware and the PC. Expand that here before * submitting it over the session bus -- * whatever is listening on the bus will be * expecting a full 32-bit sample, based on * the number of probes. */ j = 0; memset(devc->tmp_sample, 0, 4); for (i = 0; i < 4; i++) { if (((devc->flag_reg >> 2) & (1 << i)) == 0) { /* * This channel group was * enabled, copy from received * sample. */ devc->tmp_sample[i] = devc->sample[j++]; } } memcpy(devc->sample, devc->tmp_sample, 4); sr_dbg("Full sample: 0x%.8x.", sample); } /* the OLS sends its sample buffer backwards. * store it in reverse order here, so we can dump * this on the session bus later. */ offset = (devc->limit_samples - devc->num_samples) * 4; for (i = 0; i <= devc->rle_count; i++) { memcpy(devc->raw_sample_buf + offset + (i * 4), devc->sample, 4); } memset(devc->sample, 0, 4); devc->num_bytes = 0; devc->rle_count = 0; } } else { /* * This is the main loop telling us a timeout was reached, or * we've acquired all the samples we asked for -- we're done. * Send the (properly-ordered) buffer to the frontend. */ if (devc->trigger_at != -1) { /* a trigger was set up, so we need to tell the frontend * about it. */ if (devc->trigger_at > 0) { /* there are pre-trigger samples, send those first */ packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = devc->trigger_at * 4; logic.unitsize = 4; logic.data = devc->raw_sample_buf + (devc->limit_samples - devc->num_samples) * 4; sr_session_send(cb_data, &packet); } /* send the trigger */ packet.type = SR_DF_TRIGGER; sr_session_send(cb_data, &packet); /* send post-trigger samples */ packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = (devc->num_samples * 4) - (devc->trigger_at * 4); logic.unitsize = 4; logic.data = devc->raw_sample_buf + devc->trigger_at * 4 + (devc->limit_samples - devc->num_samples) * 4; sr_session_send(cb_data, &packet); } else { /* no trigger was used */ packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = devc->num_samples * 4; logic.unitsize = 4; logic.data = devc->raw_sample_buf + (devc->limit_samples - devc->num_samples) * 4; sr_session_send(cb_data, &packet); } g_free(devc->raw_sample_buf); serial_flush(devc->serial); abort_acquisition(sdi); serial_close(devc->serial); } return TRUE; }