/* * This file is part of the libsigrok project. * * Copyright (C) 2012 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include "libsigrok.h" #include "libsigrok-internal.h" #include "dso.h" /* Max time in ms before we want to check on USB events */ /* TODO tune this properly */ #define TICK 1 #define NUM_TIMEBASE 10 #define NUM_VDIV 8 static const int32_t scanopts[] = { SR_CONF_CONN, }; static const int32_t devopts[] = { SR_CONF_OSCILLOSCOPE, SR_CONF_LIMIT_FRAMES, SR_CONF_CONTINUOUS, SR_CONF_TIMEBASE, SR_CONF_BUFFERSIZE, SR_CONF_TRIGGER_SOURCE, SR_CONF_TRIGGER_SLOPE, SR_CONF_HORIZ_TRIGGERPOS, SR_CONF_FILTER, SR_CONF_VDIV, SR_CONF_COUPLING, SR_CONF_NUM_TIMEBASE, SR_CONF_NUM_VDIV, }; static const char *probe_names[] = { "CH1", "CH2", NULL, }; static const uint64_t buffersizes_32k[] = { 10240, 32768, }; static const uint64_t buffersizes_512k[] = { 10240, 524288, }; static const uint64_t buffersizes_14k[] = { 10240, 14336, }; static const struct dso_profile dev_profiles[] = { { 0x04b4, 0x2090, 0x04b5, 0x2090, "Hantek", "DSO-2090", buffersizes_32k, FIRMWARE_DIR "/hantek-dso-2090.fw" }, { 0x04b4, 0x2150, 0x04b5, 0x2150, "Hantek", "DSO-2150", buffersizes_32k, FIRMWARE_DIR "/hantek-dso-2150.fw" }, { 0x04b4, 0x2250, 0x04b5, 0x2250, "Hantek", "DSO-2250", buffersizes_512k, FIRMWARE_DIR "/hantek-dso-2250.fw" }, { 0x04b4, 0x5200, 0x04b5, 0x5200, "Hantek", "DSO-5200", buffersizes_14k, FIRMWARE_DIR "/hantek-dso-5200.fw" }, { 0x04b4, 0x520a, 0x04b5, 0x520a, "Hantek", "DSO-5200A", buffersizes_512k, FIRMWARE_DIR "/hantek-dso-5200A.fw" }, { 0, 0, 0, 0, 0, 0, 0, 0 }, }; static const uint64_t timebases[][2] = { /* microseconds */ { 10, 1000000 }, { 20, 1000000 }, { 40, 1000000 }, { 100, 1000000 }, { 200, 1000000 }, { 400, 1000000 }, /* milliseconds */ { 1, 1000 }, { 2, 1000 }, { 4, 1000 }, { 10, 1000 }, { 20, 1000 }, { 40, 1000 }, { 100, 1000 }, { 200, 1000 }, { 400, 1000 }, }; static const uint64_t vdivs[][2] = { /* millivolts */ { 10, 1000 }, { 20, 1000 }, { 50, 1000 }, { 100, 1000 }, { 200, 1000 }, { 500, 1000 }, /* volts */ { 1, 1 }, { 2, 1 }, { 5, 1 }, }; static const char *trigger_sources[] = { "CH1", "CH2", "EXT", /* TODO: forced */ }; static const char *filter_targets[] = { "CH1", "CH2", /* TODO: "TRIGGER", */ }; static const char *coupling[] = { "AC", "DC", "GND", }; SR_PRIV struct sr_dev_driver hantek_dso_driver_info; static struct sr_dev_driver *di = &hantek_dso_driver_info; static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data); static struct sr_dev_inst *dso_dev_new(int index, const struct dso_profile *prof) { struct sr_dev_inst *sdi; struct sr_probe *probe; struct drv_context *drvc; struct dev_context *devc; int i; sdi = sr_dev_inst_new(index, SR_ST_INITIALIZING, prof->vendor, prof->model, NULL); if (!sdi) return NULL; sdi->driver = di; /* * Add only the real probes -- EXT isn't a source of data, only * a trigger source internal to the device. */ for (i = 0; probe_names[i]; i++) { if (!(probe = sr_probe_new(i, SR_PROBE_ANALOG, TRUE, probe_names[i]))) return NULL; sdi->probes = g_slist_append(sdi->probes, probe); } if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) { sr_err("Device context malloc failed."); return NULL; } devc->profile = prof; devc->dev_state = IDLE; devc->timebase = DEFAULT_TIMEBASE; devc->ch1_enabled = TRUE; devc->ch2_enabled = TRUE; devc->voltage_ch1 = DEFAULT_VOLTAGE; devc->voltage_ch2 = DEFAULT_VOLTAGE; devc->coupling_ch1 = DEFAULT_COUPLING; devc->coupling_ch2 = DEFAULT_COUPLING; devc->voffset_ch1 = DEFAULT_VERT_OFFSET; devc->voffset_ch2 = DEFAULT_VERT_OFFSET; devc->voffset_trigger = DEFAULT_VERT_TRIGGERPOS; devc->framesize = DEFAULT_FRAMESIZE; devc->triggerslope = SLOPE_POSITIVE; devc->triggersource = g_strdup(DEFAULT_TRIGGER_SOURCE); devc->triggerposition = DEFAULT_HORIZ_TRIGGERPOS; sdi->priv = devc; drvc = di->priv; drvc->instances = g_slist_append(drvc->instances, sdi); return sdi; } static int configure_probes(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_probe *probe; const GSList *l; int p; devc = sdi->priv; g_slist_free(devc->enabled_probes); devc->ch1_enabled = devc->ch2_enabled = FALSE; for (l = sdi->probes, p = 0; l; l = l->next, p++) { probe = l->data; if (p == 0) devc->ch1_enabled = probe->enabled; else devc->ch2_enabled = probe->enabled; if (probe->enabled) devc->enabled_probes = g_slist_append(devc->enabled_probes, probe); } return SR_OK; } static void clear_dev_context(void *priv) { struct dev_context *devc; devc = priv; g_free(devc->triggersource); g_slist_free(devc->enabled_probes); } static int clear_instances(void) { return std_dev_clear(di, clear_dev_context); } static int hw_init(struct sr_context *sr_ctx) { return std_hw_init(sr_ctx, di, LOG_PREFIX); } static GSList *hw_scan(GSList *options) { struct drv_context *drvc; struct dev_context *devc; struct sr_dev_inst *sdi; struct sr_usb_dev_inst *usb; struct sr_config *src; const struct dso_profile *prof; GSList *l, *devices, *conn_devices; struct libusb_device_descriptor des; libusb_device **devlist; int devcnt, ret, i, j; const char *conn; drvc = di->priv; devcnt = 0; devices = 0; conn = NULL; for (l = options; l; l = l->next) { src = l->data; if (src->key == SR_CONF_CONN) { conn = g_variant_get_string(src->data, NULL); break; } } if (conn) conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn); else conn_devices = NULL; /* Find all Hantek DSO devices and upload firmware to all of them. */ libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); for (i = 0; devlist[i]; i++) { if (conn) { usb = NULL; for (l = conn_devices; l; l = l->next) { usb = l->data; if (usb->bus == libusb_get_bus_number(devlist[i]) && usb->address == libusb_get_device_address(devlist[i])) break; } if (!l) /* This device matched none of the ones that * matched the conn specification. */ continue; } if ((ret = libusb_get_device_descriptor(devlist[i], &des))) { sr_err("Failed to get device descriptor: %s.", libusb_error_name(ret)); continue; } prof = NULL; for (j = 0; dev_profiles[j].orig_vid; j++) { if (des.idVendor == dev_profiles[j].orig_vid && des.idProduct == dev_profiles[j].orig_pid) { /* Device matches the pre-firmware profile. */ prof = &dev_profiles[j]; sr_dbg("Found a %s %s.", prof->vendor, prof->model); sdi = dso_dev_new(devcnt, prof); devices = g_slist_append(devices, sdi); devc = sdi->priv; if (ezusb_upload_firmware(devlist[i], USB_CONFIGURATION, prof->firmware) == SR_OK) /* Remember when the firmware on this device was updated */ devc->fw_updated = g_get_monotonic_time(); else sr_err("Firmware upload failed for " "device %d.", devcnt); /* Dummy USB address of 0xff will get overwritten later. */ sdi->conn = sr_usb_dev_inst_new( libusb_get_bus_number(devlist[i]), 0xff, NULL); devcnt++; break; } else if (des.idVendor == dev_profiles[j].fw_vid && des.idProduct == dev_profiles[j].fw_pid) { /* Device matches the post-firmware profile. */ prof = &dev_profiles[j]; sr_dbg("Found a %s %s.", prof->vendor, prof->model); sdi = dso_dev_new(devcnt, prof); sdi->status = SR_ST_INACTIVE; devices = g_slist_append(devices, sdi); devc = sdi->priv; sdi->inst_type = SR_INST_USB; sdi->conn = sr_usb_dev_inst_new( libusb_get_bus_number(devlist[i]), libusb_get_device_address(devlist[i]), NULL); devcnt++; break; } } if (!prof) /* not a supported VID/PID */ continue; } libusb_free_device_list(devlist, 1); return devices; } static GSList *hw_dev_list(void) { return ((struct drv_context *)(di->priv))->instances; } static int hw_dev_open(struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_usb_dev_inst *usb; int64_t timediff_us, timediff_ms; int err; devc = sdi->priv; usb = sdi->conn; /* * If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS * for the FX2 to renumerate. */ err = SR_ERR; if (devc->fw_updated > 0) { sr_info("Waiting for device to reset."); /* Takes >= 300ms for the FX2 to be gone from the USB bus. */ g_usleep(300 * 1000); timediff_ms = 0; while (timediff_ms < MAX_RENUM_DELAY_MS) { if ((err = dso_open(sdi)) == SR_OK) break; g_usleep(100 * 1000); timediff_us = g_get_monotonic_time() - devc->fw_updated; timediff_ms = timediff_us / 1000; sr_spew("Waited %" PRIi64 " ms.", timediff_ms); } sr_info("Device came back after %d ms.", timediff_ms); } else { err = dso_open(sdi); } if (err != SR_OK) { sr_err("Unable to open device."); return SR_ERR; } err = libusb_claim_interface(usb->devhdl, USB_INTERFACE); if (err != 0) { sr_err("Unable to claim interface: %s.", libusb_error_name(err)); return SR_ERR; } return SR_OK; } static int hw_dev_close(struct sr_dev_inst *sdi) { dso_close(sdi); return SR_OK; } static int hw_cleanup(void) { struct drv_context *drvc; if (!(drvc = di->priv)) return SR_OK; clear_instances(); return SR_OK; } static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi) { struct sr_usb_dev_inst *usb; char str[128]; switch (id) { case SR_CONF_CONN: if (!sdi || !sdi->conn) return SR_ERR_ARG; usb = sdi->conn; if (usb->address == 255) /* Device still needs to re-enumerate after firmware * upload, so we don't know its (future) address. */ return SR_ERR; snprintf(str, 128, "%d.%d", usb->bus, usb->address); *data = g_variant_new_string(str); break; case SR_CONF_NUM_TIMEBASE: *data = g_variant_new_int32(NUM_TIMEBASE); break; case SR_CONF_NUM_VDIV: *data = g_variant_new_int32(NUM_VDIV); break; default: return SR_ERR_NA; } return SR_OK; } static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi) { struct dev_context *devc; double tmp_double; uint64_t tmp_u64, p, q; int tmp_int, ret; unsigned int i; const char *tmp_str; char **targets; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; ret = SR_OK; devc = sdi->priv; switch (id) { case SR_CONF_LIMIT_FRAMES: devc->limit_frames = g_variant_get_uint64(data); break; case SR_CONF_TRIGGER_SLOPE: tmp_u64 = g_variant_get_uint64(data); if (tmp_u64 != SLOPE_NEGATIVE && tmp_u64 != SLOPE_POSITIVE) ret = SR_ERR_ARG; devc->triggerslope = tmp_u64; break; case SR_CONF_HORIZ_TRIGGERPOS: tmp_double = g_variant_get_double(data); if (tmp_double < 0.0 || tmp_double > 1.0) { sr_err("Trigger position should be between 0.0 and 1.0."); ret = SR_ERR_ARG; } else devc->triggerposition = tmp_double; break; case SR_CONF_BUFFERSIZE: tmp_u64 = g_variant_get_uint64(data); for (i = 0; i < 2; i++) { if (devc->profile->buffersizes[i] == tmp_u64) { devc->framesize = tmp_u64; break; } } if (i == 2) ret = SR_ERR_ARG; break; case SR_CONF_TIMEBASE: g_variant_get(data, "(tt)", &p, &q); tmp_int = -1; for (i = 0; i < ARRAY_SIZE(timebases); i++) { if (timebases[i][0] == p && timebases[i][1] == q) { tmp_int = i; break; } } if (tmp_int >= 0) devc->timebase = tmp_int; else ret = SR_ERR_ARG; break; case SR_CONF_TRIGGER_SOURCE: tmp_str = g_variant_get_string(data, NULL); for (i = 0; trigger_sources[i]; i++) { if (!strcmp(tmp_str, trigger_sources[i])) { devc->triggersource = g_strdup(tmp_str); break; } } if (trigger_sources[i] == 0) ret = SR_ERR_ARG; break; case SR_CONF_FILTER: tmp_str = g_variant_get_string(data, NULL); devc->filter_ch1 = devc->filter_ch2 = devc->filter_trigger = 0; targets = g_strsplit(tmp_str, ",", 0); for (i = 0; targets[i]; i++) { if (targets[i] == '\0') /* Empty filter string can be used to clear them all. */ ; else if (!strcmp(targets[i], "CH1")) devc->filter_ch1 = TRUE; else if (!strcmp(targets[i], "CH2")) devc->filter_ch2 = TRUE; else if (!strcmp(targets[i], "TRIGGER")) devc->filter_trigger = TRUE; else { sr_err("Invalid filter target %s.", targets[i]); ret = SR_ERR_ARG; } } g_strfreev(targets); break; case SR_CONF_VDIV: /* TODO: Not supporting vdiv per channel yet. */ g_variant_get(data, "(tt)", &p, &q); tmp_int = -1; for (i = 0; i < ARRAY_SIZE(vdivs); i++) { if (vdivs[i][0] == p && vdivs[i][1] == q) { tmp_int = i; break; } } if (tmp_int >= 0) { devc->voltage_ch1 = tmp_int; devc->voltage_ch2 = tmp_int; } else ret = SR_ERR_ARG; break; case SR_CONF_COUPLING: tmp_str = g_variant_get_string(data, NULL); /* TODO: Not supporting coupling per channel yet. */ for (i = 0; coupling[i]; i++) { if (!strcmp(tmp_str, coupling[i])) { devc->coupling_ch1 = i; devc->coupling_ch2 = i; break; } } if (coupling[i] == 0) ret = SR_ERR_ARG; break; default: ret = SR_ERR_NA; break; } return ret; } static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi) { struct dev_context *devc; GVariant *tuple, *rational[2]; GVariantBuilder gvb; unsigned int i; (void)sdi; if (!sdi) return SR_ERR_ARG; devc = sdi->priv; switch (key) { case SR_CONF_SCAN_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, scanopts, ARRAY_SIZE(scanopts), sizeof(int32_t)); break; case SR_CONF_DEVICE_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, devopts, ARRAY_SIZE(devopts), sizeof(int32_t)); break; case SR_CONF_BUFFERSIZE: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64, devc->profile->buffersizes, 2, sizeof(uint64_t)); break; case SR_CONF_COUPLING: *data = g_variant_new_strv(coupling, ARRAY_SIZE(coupling)); break; case SR_CONF_VDIV: g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY); for (i = 0; i < ARRAY_SIZE(vdivs); i++) { rational[0] = g_variant_new_uint64(vdivs[i][0]); rational[1] = g_variant_new_uint64(vdivs[i][1]); tuple = g_variant_new_tuple(rational, 2); g_variant_builder_add_value(&gvb, tuple); } *data = g_variant_builder_end(&gvb); break; case SR_CONF_FILTER: *data = g_variant_new_strv(filter_targets, ARRAY_SIZE(filter_targets)); break; case SR_CONF_TIMEBASE: g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY); for (i = 0; i < ARRAY_SIZE(timebases); i++) { rational[0] = g_variant_new_uint64(timebases[i][0]); rational[1] = g_variant_new_uint64(timebases[i][1]); tuple = g_variant_new_tuple(rational, 2); g_variant_builder_add_value(&gvb, tuple); } *data = g_variant_builder_end(&gvb); break; case SR_CONF_TRIGGER_SOURCE: *data = g_variant_new_strv(trigger_sources, ARRAY_SIZE(trigger_sources)); break; default: return SR_ERR_NA; } return SR_OK; } static void send_chunk(struct sr_dev_inst *sdi, unsigned char *buf, int num_samples) { struct sr_datafeed_packet packet; struct sr_datafeed_analog analog; struct dev_context *devc; float ch1, ch2, range; int num_probes, data_offset, i; devc = sdi->priv; num_probes = (devc->ch1_enabled && devc->ch2_enabled) ? 2 : 1; packet.type = SR_DF_ANALOG; packet.payload = &analog; /* TODO: support for 5xxx series 9-bit samples */ analog.probes = devc->enabled_probes; analog.num_samples = num_samples; analog.mq = SR_MQ_VOLTAGE; analog.unit = SR_UNIT_VOLT; /* TODO: Check malloc return value. */ analog.data = g_try_malloc(analog.num_samples * sizeof(float) * num_probes); data_offset = 0; for (i = 0; i < analog.num_samples; i++) { /* * The device always sends data for both channels. If a channel * is disabled, it contains a copy of the enabled channel's * data. However, we only send the requested channels to * the bus. * * Voltage values are encoded as a value 0-255 (0-512 on the * DSO-5200*), where the value is a point in the range * represented by the vdiv setting. There are 8 vertical divs, * so e.g. 500mV/div represents 4V peak-to-peak where 0 = -2V * and 255 = +2V. */ /* TODO: Support for DSO-5xxx series 9-bit samples. */ if (devc->ch1_enabled) { range = ((float)vdivs[devc->voltage_ch1][0] / vdivs[devc->voltage_ch1][1]) * 8; ch1 = range / 255 * *(buf + i * 2 + 1); /* Value is centered around 0V. */ ch1 -= range / 2; analog.data[data_offset++] = ch1; } if (devc->ch2_enabled) { range = ((float)vdivs[devc->voltage_ch2][0] / vdivs[devc->voltage_ch2][1]) * 8; ch2 = range / 255 * *(buf + i * 2); ch2 -= range / 2; analog.data[data_offset++] = ch2; } } sr_session_send(devc->cb_data, &packet); } /* * Called by libusb (as triggered by handle_event()) when a transfer comes in. * Only channel data comes in asynchronously, and all transfers for this are * queued up beforehand, so this just needs to chuck the incoming data onto * the libsigrok session bus. */ static void receive_transfer(struct libusb_transfer *transfer) { struct sr_datafeed_packet packet; struct sr_dev_inst *sdi; struct dev_context *devc; int num_samples, pre; sdi = transfer->user_data; devc = sdi->priv; sr_spew("receive_transfer(): status %d received %d bytes.", transfer->status, transfer->actual_length); if (transfer->actual_length == 0) /* Nothing to send to the bus. */ return; num_samples = transfer->actual_length / 2; sr_spew("Got %d-%d/%d samples in frame.", devc->samp_received + 1, devc->samp_received + num_samples, devc->framesize); /* * The device always sends a full frame, but the beginning of the frame * doesn't represent the trigger point. The offset at which the trigger * happened came in with the capture state, so we need to start sending * from there up the session bus. The samples in the frame buffer * before that trigger point came after the end of the device's frame * buffer was reached, and it wrapped around to overwrite up until the * trigger point. */ if (devc->samp_received < devc->trigger_offset) { /* Trigger point not yet reached. */ if (devc->samp_received + num_samples < devc->trigger_offset) { /* The entire chunk is before the trigger point. */ memcpy(devc->framebuf + devc->samp_buffered * 2, transfer->buffer, num_samples * 2); devc->samp_buffered += num_samples; } else { /* * This chunk hits or overruns the trigger point. * Store the part before the trigger fired, and * send the rest up to the session bus. */ pre = devc->trigger_offset - devc->samp_received; memcpy(devc->framebuf + devc->samp_buffered * 2, transfer->buffer, pre * 2); devc->samp_buffered += pre; /* The rest of this chunk starts with the trigger point. */ sr_dbg("Reached trigger point, %d samples buffered.", devc->samp_buffered); /* Avoid the corner case where the chunk ended at * exactly the trigger point. */ if (num_samples > pre) send_chunk(sdi, transfer->buffer + pre * 2, num_samples - pre); } } else { /* Already past the trigger point, just send it all out. */ send_chunk(sdi, transfer->buffer, num_samples); } devc->samp_received += num_samples; /* Everything in this transfer was either copied to the buffer or * sent to the session bus. */ g_free(transfer->buffer); libusb_free_transfer(transfer); if (devc->samp_received >= devc->framesize) { /* That was the last chunk in this frame. Send the buffered * pre-trigger samples out now, in one big chunk. */ sr_dbg("End of frame, sending %d pre-trigger buffered samples.", devc->samp_buffered); send_chunk(sdi, devc->framebuf, devc->samp_buffered); /* Mark the end of this frame. */ packet.type = SR_DF_FRAME_END; sr_session_send(devc->cb_data, &packet); if (devc->limit_frames && ++devc->num_frames == devc->limit_frames) { /* Terminate session */ devc->dev_state = STOPPING; } else { devc->dev_state = NEW_CAPTURE; } } } static int handle_event(int fd, int revents, void *cb_data) { const struct sr_dev_inst *sdi; struct sr_datafeed_packet packet; struct timeval tv; struct dev_context *devc; struct drv_context *drvc = di->priv; const struct libusb_pollfd **lupfd; int num_probes, i; uint32_t trigger_offset; uint8_t capturestate; (void)fd; (void)revents; sdi = cb_data; devc = sdi->priv; if (devc->dev_state == STOPPING) { /* We've been told to wind up the acquisition. */ sr_dbg("Stopping acquisition."); /* * TODO: Doesn't really cancel pending transfers so they might * come in after SR_DF_END is sent. */ lupfd = libusb_get_pollfds(drvc->sr_ctx->libusb_ctx); for (i = 0; lupfd[i]; i++) sr_source_remove(lupfd[i]->fd); free(lupfd); packet.type = SR_DF_END; sr_session_send(sdi, &packet); devc->dev_state = IDLE; return TRUE; } /* Always handle pending libusb events. */ tv.tv_sec = tv.tv_usec = 0; libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv); /* TODO: ugh */ if (devc->dev_state == NEW_CAPTURE) { if (dso_capture_start(sdi) != SR_OK) return TRUE; if (dso_enable_trigger(sdi) != SR_OK) return TRUE; // if (dso_force_trigger(sdi) != SR_OK) // return TRUE; sr_dbg("Successfully requested next chunk."); devc->dev_state = CAPTURE; return TRUE; } if (devc->dev_state != CAPTURE) return TRUE; if ((dso_get_capturestate(sdi, &capturestate, &trigger_offset)) != SR_OK) return TRUE; sr_dbg("Capturestate %d.", capturestate); sr_dbg("Trigger offset 0x%.6x.", trigger_offset); switch (capturestate) { case CAPTURE_EMPTY: if (++devc->capture_empty_count >= MAX_CAPTURE_EMPTY) { devc->capture_empty_count = 0; if (dso_capture_start(sdi) != SR_OK) break; if (dso_enable_trigger(sdi) != SR_OK) break; // if (dso_force_trigger(sdi) != SR_OK) // break; sr_dbg("Successfully requested next chunk."); } break; case CAPTURE_FILLING: /* No data yet. */ break; case CAPTURE_READY_8BIT: /* Remember where in the captured frame the trigger is. */ devc->trigger_offset = trigger_offset; num_probes = (devc->ch1_enabled && devc->ch2_enabled) ? 2 : 1; /* TODO: Check malloc return value. */ devc->framebuf = g_try_malloc(devc->framesize * num_probes * 2); devc->samp_buffered = devc->samp_received = 0; /* Tell the scope to send us the first frame. */ if (dso_get_channeldata(sdi, receive_transfer) != SR_OK) break; /* * Don't hit the state machine again until we're done fetching * the data we just told the scope to send. */ devc->dev_state = FETCH_DATA; /* Tell the frontend a new frame is on the way. */ packet.type = SR_DF_FRAME_BEGIN; sr_session_send(sdi, &packet); break; case CAPTURE_READY_9BIT: /* TODO */ sr_err("Not yet supported."); break; case CAPTURE_TIMEOUT: /* Doesn't matter, we'll try again next time. */ break; default: sr_dbg("Unknown capture state: %d.", capturestate); break; } return TRUE; } static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) { const struct libusb_pollfd **lupfd; struct dev_context *devc; struct drv_context *drvc = di->priv; int i; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; devc = sdi->priv; devc->cb_data = cb_data; if (configure_probes(sdi) != SR_OK) { sr_err("Failed to configure probes."); return SR_ERR; } if (dso_init(sdi) != SR_OK) return SR_ERR; if (dso_capture_start(sdi) != SR_OK) return SR_ERR; devc->dev_state = CAPTURE; lupfd = libusb_get_pollfds(drvc->sr_ctx->libusb_ctx); for (i = 0; lupfd[i]; i++) sr_source_add(lupfd[i]->fd, lupfd[i]->events, TICK, handle_event, (void *)sdi); free(lupfd); /* Send header packet to the session bus. */ std_session_send_df_header(cb_data, LOG_PREFIX); return SR_OK; } static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *devc; (void)cb_data; if (sdi->status != SR_ST_ACTIVE) return SR_ERR; devc = sdi->priv; devc->dev_state = STOPPING; return SR_OK; } SR_PRIV struct sr_dev_driver hantek_dso_driver_info = { .name = "hantek-dso", .longname = "Hantek DSO", .api_version = 1, .init = hw_init, .cleanup = hw_cleanup, .scan = hw_scan, .dev_list = hw_dev_list, .dev_clear = clear_instances, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = hw_dev_open, .dev_close = hw_dev_close, .dev_acquisition_start = hw_dev_acquisition_start, .dev_acquisition_stop = hw_dev_acquisition_stop, .priv = NULL, };