/* * This file is part of the libsigrok project. * * Copyright (C) 2011-2014 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "protocol.h" SR_PRIV struct sr_dev_driver chronovu_la_driver_info; static struct sr_dev_driver *di = &chronovu_la_driver_info; static const int32_t hwcaps[] = { SR_CONF_LOGIC_ANALYZER, SR_CONF_SAMPLERATE, SR_CONF_TRIGGER_MATCH, SR_CONF_LIMIT_MSEC, /* TODO: Not yet implemented. */ SR_CONF_LIMIT_SAMPLES, /* TODO: Not yet implemented. */ }; static const int32_t trigger_matches[] = { SR_TRIGGER_ZERO, SR_TRIGGER_ONE, SR_TRIGGER_RISING, SR_TRIGGER_FALLING, }; /* The ChronoVu LA8/LA16 can have multiple VID/PID pairs. */ static struct { uint16_t vid; uint16_t pid; int model; const char *iproduct; } vid_pid[] = { { 0x0403, 0x6001, CHRONOVU_LA8, "ChronoVu LA8" }, { 0x0403, 0x8867, CHRONOVU_LA8, "ChronoVu LA8" }, { 0x0403, 0x6001, CHRONOVU_LA16, "ChronoVu LA16" }, { 0x0403, 0x8867, CHRONOVU_LA16, "ChronoVu LA16" }, }; static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data); static void clear_helper(void *priv) { struct dev_context *devc; devc = priv; ftdi_free(devc->ftdic); g_free(devc->final_buf); } static int dev_clear(void) { return std_dev_clear(di, clear_helper); } static int init(struct sr_context *sr_ctx) { return std_init(sr_ctx, di, LOG_PREFIX); } static int add_device(int idx, int model, GSList **devices) { int ret; unsigned int i; struct sr_dev_inst *sdi; struct drv_context *drvc; struct dev_context *devc; struct sr_channel *ch; ret = SR_OK; drvc = di->priv; /* Allocate memory for our private device context. */ devc = g_try_malloc(sizeof(struct dev_context)); /* Set some sane defaults. */ devc->prof = &cv_profiles[model]; devc->ftdic = NULL; /* Will be set in the open() API call. */ devc->cur_samplerate = 0; /* Set later (different for LA8/LA16). */ devc->limit_msec = 0; devc->limit_samples = 0; devc->cb_data = NULL; memset(devc->mangled_buf, 0, BS); devc->final_buf = NULL; devc->trigger_pattern = 0x0000; /* Irrelevant, see trigger_mask. */ devc->trigger_mask = 0x0000; /* All channels: "don't care". */ devc->trigger_edgemask = 0x0000; /* All channels: "state triggered". */ devc->trigger_found = 0; devc->done = 0; devc->block_counter = 0; devc->divcount = 0; devc->usb_vid = vid_pid[idx].vid; devc->usb_pid = vid_pid[idx].pid; memset(devc->samplerates, 0, sizeof(uint64_t) * 255); /* Allocate memory where we'll store the de-mangled data. */ if (!(devc->final_buf = g_try_malloc(SDRAM_SIZE))) { sr_err("Failed to allocate memory for sample buffer."); ret = SR_ERR_MALLOC; goto err_free_devc; } /* We now know the device, set its max. samplerate as default. */ devc->cur_samplerate = devc->prof->max_samplerate; /* Register the device with libsigrok. */ sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, "ChronoVu", devc->prof->modelname, NULL); if (!sdi) { sr_err("Failed to create device instance."); ret = SR_ERR; goto err_free_final_buf; } sdi->driver = di; sdi->priv = devc; for (i = 0; i < devc->prof->num_channels; i++) { if (!(ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE, cv_channel_names[i]))) { ret = SR_ERR; goto err_free_dev_inst; } sdi->channels = g_slist_append(sdi->channels, ch); } *devices = g_slist_append(*devices, sdi); drvc->instances = g_slist_append(drvc->instances, sdi); return SR_OK; err_free_dev_inst: sr_dev_inst_free(sdi); err_free_final_buf: g_free(devc->final_buf); err_free_devc: g_free(devc); return ret; } static GSList *scan(GSList *options) { int ret; unsigned int i; GSList *devices; struct ftdi_context *ftdic; (void)options; devices = NULL; /* Allocate memory for the FTDI context and initialize it. */ if (!(ftdic = ftdi_new())) { sr_err("Failed to initialize libftdi."); return NULL; } /* Check for LA8 and/or LA16 devices with various VID/PIDs. */ for (i = 0; i < ARRAY_SIZE(vid_pid); i++) { ret = ftdi_usb_open_desc(ftdic, vid_pid[i].vid, vid_pid[i].pid, vid_pid[i].iproduct, NULL); /* Show errors other than "device not found". */ if (ret < 0 && ret != -3) sr_dbg("Error finding/opening device (%d): %s.", ret, ftdi_get_error_string(ftdic)); if (ret < 0) continue; /* No device found, or not usable. */ sr_dbg("Found %s device (%04x:%04x).", vid_pid[i].iproduct, vid_pid[i].vid, vid_pid[i].pid); if ((ret = add_device(i, vid_pid[i].model, &devices)) < 0) sr_dbg("Failed to add device: %d.", ret); if ((ret = ftdi_usb_close(ftdic)) < 0) sr_dbg("Failed to close FTDI device (%d): %s.", ret, ftdi_get_error_string(ftdic)); } /* Close USB device, deinitialize and free the FTDI context. */ ftdi_free(ftdic); ftdic = NULL; return devices; } static GSList *dev_list(void) { return ((struct drv_context *)(di->priv))->instances; } static int dev_open(struct sr_dev_inst *sdi) { struct dev_context *devc; int ret; ret = SR_ERR; if (!(devc = sdi->priv)) return SR_ERR_BUG; /* Allocate memory for the FTDI context and initialize it. */ if (!(devc->ftdic = ftdi_new())) { sr_err("Failed to initialize libftdi."); return SR_ERR; } sr_dbg("Opening %s device (%04x:%04x).", devc->prof->modelname, devc->usb_vid, devc->usb_pid); /* Open the device. */ if ((ret = ftdi_usb_open_desc(devc->ftdic, devc->usb_vid, devc->usb_pid, devc->prof->iproduct, NULL)) < 0) { sr_err("Failed to open FTDI device (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); goto err_ftdi_free; } sr_dbg("Device opened successfully."); /* Purge RX/TX buffers in the FTDI chip. */ if ((ret = ftdi_usb_purge_buffers(devc->ftdic)) < 0) { sr_err("Failed to purge FTDI buffers (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); goto err_ftdi_free; } sr_dbg("FTDI buffers purged successfully."); /* Enable flow control in the FTDI chip. */ if ((ret = ftdi_setflowctrl(devc->ftdic, SIO_RTS_CTS_HS)) < 0) { sr_err("Failed to enable FTDI flow control (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); goto err_ftdi_free; } sr_dbg("FTDI flow control enabled successfully."); /* Wait 100ms. */ g_usleep(100 * 1000); sdi->status = SR_ST_ACTIVE; return SR_OK; err_ftdi_free: ftdi_free(devc->ftdic); /* Close device (if open), free FTDI context. */ devc->ftdic = NULL; return ret; } static int dev_close(struct sr_dev_inst *sdi) { int ret; struct dev_context *devc; if (sdi->status != SR_ST_ACTIVE) return SR_OK; devc = sdi->priv; if (devc->ftdic && (ret = ftdi_usb_close(devc->ftdic)) < 0) sr_err("Failed to close FTDI device (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); sdi->status = SR_ST_INACTIVE; return SR_OK; } static int cleanup(void) { return dev_clear(); } static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; (void)cg; switch (id) { case SR_CONF_SAMPLERATE: if (!sdi || !(devc = sdi->priv)) return SR_ERR_BUG; *data = g_variant_new_uint64(devc->cur_samplerate); break; default: return SR_ERR_NA; } return SR_OK; } static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; (void)cg; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; if (!(devc = sdi->priv)) return SR_ERR_BUG; switch (id) { case SR_CONF_SAMPLERATE: if (cv_set_samplerate(sdi, g_variant_get_uint64(data)) < 0) return SR_ERR; break; case SR_CONF_LIMIT_MSEC: if (g_variant_get_uint64(data) == 0) return SR_ERR_ARG; devc->limit_msec = g_variant_get_uint64(data); break; case SR_CONF_LIMIT_SAMPLES: if (g_variant_get_uint64(data) == 0) return SR_ERR_ARG; devc->limit_samples = g_variant_get_uint64(data); break; default: return SR_ERR_NA; } return SR_OK; } static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { GVariant *gvar, *grange[2]; GVariantBuilder gvb; struct dev_context *devc; (void)cg; switch (key) { case SR_CONF_DEVICE_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t)); break; case SR_CONF_SAMPLERATE: if (!sdi || !sdi->priv || !(devc = sdi->priv)) return SR_ERR_BUG; cv_fill_samplerates_if_needed(sdi); g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), devc->samplerates, ARRAY_SIZE(devc->samplerates), sizeof(uint64_t)); g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_LIMIT_SAMPLES: if (!sdi || !sdi->priv || !(devc = sdi->priv) || !devc->prof) return SR_ERR_BUG; grange[0] = g_variant_new_uint64(0); if (devc->prof->model == CHRONOVU_LA8) grange[1] = g_variant_new_uint64(MAX_NUM_SAMPLES); else grange[1] = g_variant_new_uint64(MAX_NUM_SAMPLES / 2); *data = g_variant_new_tuple(grange, 2); break; case SR_CONF_TRIGGER_MATCH: if (!sdi || !sdi->priv || !(devc = sdi->priv) || !devc->prof) return SR_ERR_BUG; *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, trigger_matches, devc->prof->num_trigger_matches, sizeof(int32_t)); break; default: return SR_ERR_NA; } return SR_OK; } static int receive_data(int fd, int revents, void *cb_data) { int i, ret; struct sr_dev_inst *sdi; struct dev_context *devc; (void)fd; (void)revents; if (!(sdi = cb_data)) { sr_err("cb_data was NULL."); return FALSE; } if (!(devc = sdi->priv)) { sr_err("sdi->priv was NULL."); return FALSE; } if (!devc->ftdic) { sr_err("devc->ftdic was NULL."); return FALSE; } /* Get one block of data. */ if ((ret = cv_read_block(devc)) < 0) { sr_err("Failed to read data block: %d.", ret); dev_acquisition_stop(sdi, sdi); return FALSE; } /* We need to get exactly NUM_BLOCKS blocks (i.e. 8MB) of data. */ if (devc->block_counter != (NUM_BLOCKS - 1)) { devc->block_counter++; return TRUE; } sr_dbg("Sampling finished, sending data to session bus now."); /* * All data was received and demangled, send it to the session bus. * * Note: Due to the method how data is spread across the 8MByte of * SDRAM, we can _not_ send it to the session bus in a streaming * manner while we receive it. We have to receive and de-mangle the * full 8MByte first, only then the whole buffer contains valid data. */ for (i = 0; i < NUM_BLOCKS; i++) cv_send_block_to_session_bus(devc, i); dev_acquisition_stop(sdi, sdi); return TRUE; } static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *devc; uint8_t buf[8]; int bytes_to_write, bytes_written; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; if (!(devc = sdi->priv)) { sr_err("sdi->priv was NULL."); return SR_ERR_BUG; } if (!devc->ftdic) { sr_err("devc->ftdic was NULL."); return SR_ERR_BUG; } devc->divcount = cv_samplerate_to_divcount(sdi, devc->cur_samplerate); if (devc->divcount == 0xff) { sr_err("Invalid divcount/samplerate."); return SR_ERR; } if (cv_convert_trigger(sdi) != SR_OK) { sr_err("Failed to configure trigger."); return SR_ERR; } /* Fill acquisition parameters into buf[]. */ if (devc->prof->model == CHRONOVU_LA8) { buf[0] = devc->divcount; buf[1] = 0xff; /* This byte must always be 0xff. */ buf[2] = devc->trigger_pattern & 0xff; buf[3] = devc->trigger_mask & 0xff; bytes_to_write = 4; } else { buf[0] = devc->divcount; buf[1] = 0xff; /* This byte must always be 0xff. */ buf[2] = (devc->trigger_pattern & 0xff00) >> 8; /* LSB */ buf[3] = (devc->trigger_pattern & 0x00ff) >> 0; /* MSB */ buf[4] = (devc->trigger_mask & 0xff00) >> 8; /* LSB */ buf[5] = (devc->trigger_mask & 0x00ff) >> 0; /* MSB */ buf[6] = (devc->trigger_edgemask & 0xff00) >> 8; /* LSB */ buf[7] = (devc->trigger_edgemask & 0x00ff) >> 0; /* MSB */ bytes_to_write = 8; } /* Start acquisition. */ bytes_written = cv_write(devc, buf, bytes_to_write); if (bytes_written < 0 || bytes_written != bytes_to_write) { sr_err("Acquisition failed to start."); return SR_ERR; } sr_dbg("Hardware acquisition started successfully."); devc->cb_data = cb_data; /* Send header packet to the session bus. */ std_session_send_df_header(cb_data, LOG_PREFIX); /* Time when we should be done (for detecting trigger timeouts). */ devc->done = (devc->divcount + 1) * devc->prof->trigger_constant + g_get_monotonic_time() + (10 * G_TIME_SPAN_SECOND); devc->block_counter = 0; devc->trigger_found = 0; /* Hook up a dummy handler to receive data from the device. */ sr_source_add(-1, G_IO_IN, 0, receive_data, (void *)sdi); return SR_OK; } static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data) { struct sr_datafeed_packet packet; (void)sdi; sr_dbg("Stopping acquisition."); sr_source_remove(-1); /* Send end packet to the session bus. */ sr_dbg("Sending SR_DF_END."); packet.type = SR_DF_END; sr_session_send(cb_data, &packet); return SR_OK; } SR_PRIV struct sr_dev_driver chronovu_la_driver_info = { .name = "chronovu-la", .longname = "ChronoVu LA8/LA16", .api_version = 1, .init = init, .cleanup = cleanup, .scan = scan, .dev_list = dev_list, .dev_clear = dev_clear, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .priv = NULL, };