/* * This file is part of the sigrok project. * * Copyright (C) 2010 Håvard Espeland , * Copyright (C) 2010 Martin Stensgård * Copyright (C) 2010 Carl Henrik Lunde * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* * ASIX Sigma Logic Analyzer Driver */ #include #include #include #include "sigrok.h" #include "asix-sigma.h" #define USB_VENDOR 0xa600 #define USB_PRODUCT 0xa000 #define USB_DESCRIPTION "ASIX SIGMA" #define USB_VENDOR_NAME "ASIX" #define USB_MODEL_NAME "SIGMA" #define USB_MODEL_VERSION "" #define FIRMWARE FIRMWARE_DIR "/asix-sigma-200.firmware" static GSList *device_instances = NULL; // XXX These should be per device static struct ftdi_context ftdic; static uint64_t cur_samplerate = MHZ(200); static uint32_t limit_msec = 0; static struct timeval start_tv; static uint64_t supported_samplerates[] = { MHZ(200), 0, }; static struct samplerates samplerates = { MHZ(200), MHZ(200), 0, supported_samplerates, }; static int capabilities[] = { HWCAP_LOGIC_ANALYZER, HWCAP_SAMPLERATE, /* These are really implemented in the driver, not the hardware. */ HWCAP_LIMIT_MSEC, 0, }; static int sigma_read(void* buf, size_t size) { int ret; ret = ftdi_read_data(&ftdic, (unsigned char*) buf, size); if (ret < 0) { g_warning("ftdi_read_data failed: %s", ftdi_get_error_string(&ftdic)); } return ret; } static int sigma_write(void* buf, size_t size) { int ret; ret = ftdi_write_data(&ftdic, (unsigned char*) buf, size); if (ret < 0) { g_warning("ftdi_write_data failed: %s", ftdi_get_error_string(&ftdic)); } else if ((size_t) ret != size) { g_warning("ftdi_write_data did not complete write\n"); } return ret; } static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len) { size_t i; uint8_t buf[len + 2]; int idx = 0; buf[idx++] = REG_ADDR_LOW | (reg & 0xf); buf[idx++] = REG_ADDR_HIGH | (reg >> 4); for (i=0; i> 4); } return sigma_write(buf, idx); } static int sigma_set_register(uint8_t reg, uint8_t value) { return sigma_write_register(reg, &value, 1); } static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len) { uint8_t buf[3]; buf[0] = REG_ADDR_LOW | (reg & 0xf); buf[1] = REG_ADDR_HIGH | (reg >> 4); buf[2] = REG_READ_ADDR; sigma_write(buf, sizeof(buf)); return sigma_read(data, len); } static uint8_t sigma_get_register(uint8_t reg) { uint8_t value; if (1 != sigma_read_register(reg, &value, 1)) { g_warning("Sigma_get_register: 1 byte expected"); return 0; } return value; } static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos) { uint8_t buf[] = { REG_ADDR_LOW | READ_TRIGGER_POS_LOW, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, }; uint8_t result[6]; sigma_write(buf, sizeof(buf)); sigma_read(result, sizeof(result)); *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16); *stoppos = result[3] | (result[4] << 8) | (result[5] << 16); return 1; } static int sigma_read_dram(uint16_t startchunk, size_t numchunks, uint8_t *data) { size_t i; uint8_t buf[4096]; int idx = 0; /* Send the startchunk. Index start with 1 */ buf[0] = startchunk >> 8; buf[1] = startchunk & 0xff; sigma_write_register(WRITE_MEMROW, buf, 2); /* Read the DRAM */ buf[idx++] = REG_DRAM_BLOCK; buf[idx++] = REG_DRAM_WAIT_ACK; for (i = 0; i < numchunks; ++i) { /* Alternate bit to copy from dram to cache */ if (i != numchunks-1) buf[idx++] = REG_DRAM_BLOCK | (((i+1) % 2) << 4); buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4); if (i != numchunks-1) buf[idx++] = REG_DRAM_WAIT_ACK; } sigma_write(buf, idx); return sigma_read(data, numchunks * CHUNK_SIZE); } /* Generate the bitbang stream for programming the FPGA */ static int bin2bitbang(const char *filename, unsigned char **buf, size_t* buf_size) { FILE *f = fopen(filename, "r"); long file_size; unsigned long offset = 0; unsigned char *p; uint8_t *compressed_buf, *firmware; uLongf csize, fwsize; const int buffer_size = 65536; size_t i; int c, ret; if (!f) { g_warning("fopen(\"%s\", \"r\")", filename); return -1; } if (-1 == fseek(f, 0, SEEK_END)) { g_warning("fseek on %s failed", filename); fclose(f); return -1; } file_size = ftell(f); fseek(f, 0, SEEK_SET); compressed_buf = g_malloc(file_size); firmware = g_malloc(buffer_size); if (!compressed_buf || !firmware) { g_warning("Error allocating buffers"); return -1; } uint32_t imm = 0x3f6df2ab; csize = 0; while ((c = getc(f)) != EOF) { imm = (imm + 0xa853753) % 177 + (imm * 0x8034052); compressed_buf[csize++] = c ^ imm; } fclose(f); fwsize = buffer_size; ret = uncompress(firmware, &fwsize, compressed_buf, csize); if (ret < 0) { g_free(compressed_buf); g_free(firmware); g_warning("Could not unpack Sigma firmware. (Error %d)\n", ret); return -1; } g_free(compressed_buf); *buf_size = fwsize * 2 * 8; *buf = p = (unsigned char*) g_malloc(*buf_size); if (!p) { g_warning("Error allocating buffers"); return -1; } for (i = 0; i < fwsize; ++i) { int bit; for (bit = 7; bit >= 0; --bit) { int v = firmware[i] & 1 << bit ? 0x40 : 0x00; p[offset++] = v | 0x01; p[offset++] = v; } } g_free(firmware); if (offset != *buf_size) { g_free(*buf); g_warning("Error reading firmware %s " "offset=%ld, file_size=%ld, buf_size=%zd\n", filename, offset, file_size, *buf_size); return -1; } return 0; } static int hw_init(char *deviceinfo) { struct sigrok_device_instance *sdi; deviceinfo = deviceinfo; ftdi_init(&ftdic); /* Look for SIGMAs */ if (ftdi_usb_open_desc(&ftdic, USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL) < 0) return 0; /* Register SIGMA device */ sdi = sigrok_device_instance_new(0, ST_INITIALIZING, USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION); if (!sdi) return 0; device_instances = g_slist_append(device_instances, sdi); /* We will open the device again when we need it */ ftdi_usb_close(&ftdic); return 1; } static int hw_opendev(int device_index) { int ret; unsigned char *buf; unsigned char pins; size_t buf_size; struct sigrok_device_instance *sdi; unsigned char result[32]; /* Make sure it's an ASIX SIGMA */ if ((ret = ftdi_usb_open_desc(&ftdic, USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) { g_warning("ftdi_usb_open failed: %s", ftdi_get_error_string(&ftdic)); return 0; } if ((ret = ftdi_set_bitmode(&ftdic, 0xdf, BITMODE_BITBANG)) < 0) { g_warning("ftdi_set_bitmode failed: %s", ftdi_get_error_string(&ftdic)); return 0; } /* Four times the speed of sigmalogan - Works well */ if ((ret = ftdi_set_baudrate(&ftdic, 750000)) < 0) { g_warning("ftdi_set_baudrate failed: %s", ftdi_get_error_string(&ftdic)); return 0; } /* Force the FPGA to reboot */ unsigned char suicide[] = { 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84, }; sigma_write(suicide, sizeof(suicide)); sigma_write(suicide, sizeof(suicide)); sigma_write(suicide, sizeof(suicide)); sigma_write(suicide, sizeof(suicide)); /* Prepare to upload firmware (FPGA specific) */ unsigned char init[] = { 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 }; sigma_write(init, sizeof(init)); ftdi_usb_purge_buffers(&ftdic); /* Wait until the FPGA asserts INIT_B */ while (1) { ret = sigma_read(result, 1); if (result[0] & 0x20) break; } /* Prepare firmware */ if (-1 == bin2bitbang(FIRMWARE, &buf, &buf_size)) { g_warning("An error occured while reading the firmware: %s", FIRMWARE); return SIGROK_ERR; } /* Upload firmare */ sigma_write(buf, buf_size); g_free(buf); if ((ret = ftdi_set_bitmode(&ftdic, 0x00, BITMODE_RESET)) < 0) { g_warning("ftdi_set_bitmode failed: %s", ftdi_get_error_string(&ftdic)); return SIGROK_ERR; } ftdi_usb_purge_buffers(&ftdic); /* Discard garbage */ while (1 == sigma_read(&pins, 1)) ; /* Initialize the logic analyzer mode */ unsigned char logic_mode_start[] = { 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40, 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38 }; sigma_write(logic_mode_start, sizeof(logic_mode_start)); /* Expect a 3 byte reply */ ret = sigma_read(result, 3); if (ret != 3 || result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) { g_warning("Sigma configuration failed. Invalid reply received."); return SIGROK_ERR; } /* Works like a charm */ if (!(sdi = get_sigrok_device_instance(device_instances, device_index))) return SIGROK_ERR; sdi->status = ST_ACTIVE; g_message("Firmware uploaded"); return SIGROK_OK; } static void hw_closedev(int device_index) { device_index = device_index; ftdi_usb_close(&ftdic); } static void hw_cleanup(void) { } static void *hw_get_device_info(int device_index, int device_info_id) { struct sigrok_device_instance *sdi; void *info = NULL; if (!(sdi = get_sigrok_device_instance(device_instances, device_index))) { fprintf(stderr, "It's NULL.\n"); return NULL; } switch (device_info_id) { case DI_INSTANCE: info = sdi; break; case DI_NUM_PROBES: info = GINT_TO_POINTER(4); break; case DI_SAMPLERATES: info = &samplerates; break; case DI_TRIGGER_TYPES: info = 0;//TRIGGER_TYPES; break; case DI_CUR_SAMPLERATE: info = &cur_samplerate; break; } return info; } static int hw_get_status(int device_index) { struct sigrok_device_instance *sdi; sdi = get_sigrok_device_instance(device_instances, device_index); if (sdi) return sdi->status; else return ST_NOT_FOUND; } static int *hw_get_capabilities(void) { return capabilities; } static int hw_set_configuration(int device_index, int capability, void *value) { struct sigrok_device_instance *sdi; int ret; uint64_t *tmp_u64; if (!(sdi = get_sigrok_device_instance(device_instances, device_index))) return SIGROK_ERR; if (capability == HWCAP_SAMPLERATE) { tmp_u64 = (uint64_t*) value; /* Only 200 MHz implemented */ ret = SIGROK_OK; } else if (capability == HWCAP_PROBECONFIG) { ret = SIGROK_OK; } else if (capability == HWCAP_LIMIT_MSEC) { limit_msec = strtoull(value, NULL, 10); ret = SIGROK_OK; } else { ret = SIGROK_ERR; } return ret; } /* Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster. Each event is 20ns apart, and can contain multiple samples. For 200 MHz, an event contains 4 samples for each channel, spread 5 ns apart */ static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts, uint8_t *lastsample, void *user_data) { const int samples_per_event = 4; uint16_t tsdiff; uint16_t ts; uint8_t samples[65536 * samples_per_event]; struct datafeed_packet packet; int i, j, k; size_t n = 0; int clustersize = EVENTS_PER_CLUSTER * samples_per_event; /* 4 for 200 MHz */ /* For each ts */ for (i = 0; i < 64; ++i) { ts = *(uint16_t*) &buf[i*16]; tsdiff = ts - *lastts; *lastts = ts; /* Pad last sample up to current point */ int numpad = tsdiff * samples_per_event - clustersize; if (numpad > 0) { memset(samples, *lastsample, tsdiff*samples_per_event - clustersize); n = tsdiff*samples_per_event - clustersize; } uint16_t *event = (uint16_t*) &buf[i*16+2]; /* For each sample in cluster */ for (j = 0; j < 7; ++j) { for (k = 0; k < samples_per_event; ++k) { /* Extract samples from bytestream. Samples are packed together in a short */ samples[n++] = ((!!(event[j] & (1 << (k+0x0)))) << 0) | ((!!(event[j] & (1 << (k+0x4)))) << 1) | ((!!(event[j] & (1 << (k+0x8)))) << 2) | ((!!(event[j] & (1 << (k+0xc)))) << 3); } } *lastsample = samples[n-1]; /* Send to sigrok */ size_t sent = 0; while (sent < n) { int tosend = MIN(4096, n-sent); packet.type = DF_LOGIC8; packet.length = tosend; packet.payload = samples+sent; session_bus(user_data, &packet); sent += tosend; } } return 0; } static int receive_data(int fd, int revents, void *user_data) { struct datafeed_packet packet; const int chunks_per_read = 32; unsigned char buf[chunks_per_read * CHUNK_SIZE]; int bufsz; uint32_t triggerpos, stoppos; int numchunks; struct timeval tv; uint32_t running_msec; uint16_t lastts = 0; uint8_t lastsample = 0; int curchunk, i; fd = fd; revents = revents; /* Get the current position */ sigma_read_pos(&stoppos, &triggerpos); numchunks = stoppos / 512; /* Check if the has expired, or memory is full */ gettimeofday(&tv, 0); running_msec = (tv.tv_sec - start_tv.tv_sec) * 1000 + (tv.tv_usec - start_tv.tv_usec) / 1000; if (running_msec < limit_msec && numchunks < 32767) return FALSE; /* Stop Acqusition */ sigma_set_register(WRITE_MODE, 0x11); /* Set SDRAM Read Enable */ sigma_set_register(WRITE_MODE, 0x02); /* Get the current position */ sigma_read_pos(&stoppos, &triggerpos); /* Download sample data */ for (curchunk = 0; curchunk < numchunks;) { int newchunks = MIN(chunks_per_read, numchunks - curchunk); g_message("Downloading sample data: %.0f %%", 100.0 * curchunk / numchunks); bufsz = sigma_read_dram(curchunk, newchunks, buf); /* Find first ts */ if (curchunk == 0) { lastts = *(uint16_t*) buf - 1; } /* Decode chunks and send them to sigrok */ for (i = 0; i < newchunks; ++i) { decode_chunk_ts(buf + (i * CHUNK_SIZE), &lastts, &lastsample, user_data); } curchunk += newchunks; } /* End of data */ packet.type = DF_END; packet.length = 0; session_bus(user_data, &packet); return TRUE; } static int hw_start_acquisition(int device_index, gpointer session_device_id) { struct sigrok_device_instance *sdi; struct datafeed_packet packet; struct datafeed_header header; session_device_id = session_device_id; if (!(sdi = get_sigrok_device_instance(device_instances, device_index))) return SIGROK_ERR; device_index = device_index; /* Setup trigger (by trigger-in) */ sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20); /* More trigger setup */ uint8_t trigger_option[2] = { 0x38, 0x00 }; sigma_write_register(WRITE_TRIGGER_OPTION, trigger_option, sizeof(trigger_option)); /* Trigger normal (falling edge) */ sigma_set_register(WRITE_TRIGGER_SELECT1, 0x08); /* Enable pins (200 MHz, 4 pins) */ sigma_set_register(WRITE_CLOCK_SELECT, 0xf0); /* Setup maximum post trigger time */ sigma_set_register(WRITE_POST_TRIGGER, 0xff); /* Start Acqusition (Software trigger start) */ gettimeofday(&start_tv, 0); sigma_set_register(WRITE_MODE, 0x0d); /* Add capture source */ source_add(0, G_IO_IN, 10, receive_data, session_device_id); receive_data(0, 1, session_device_id); /* Send header packet to the session bus. */ packet.type = DF_HEADER; packet.length = sizeof(struct datafeed_header); packet.payload = &header; header.feed_version = 1; gettimeofday(&header.starttime, NULL); header.samplerate = cur_samplerate; header.protocol_id = PROTO_RAW; header.num_probes = 4; session_bus(session_device_id, &packet); return SIGROK_OK; } static void hw_stop_acquisition(int device_index, gpointer session_device_id) { device_index = device_index; session_device_id = session_device_id; /* Stop Acqusition */ sigma_set_register(WRITE_MODE, 0x11); // XXX Set some state to indicate that data should be sent to sigrok // Now, we just wait for timeout } struct device_plugin asix_sigma_plugin_info = { "asix-sigma", 1, hw_init, hw_cleanup, hw_opendev, hw_closedev, hw_get_device_info, hw_get_status, hw_get_capabilities, hw_set_configuration, hw_start_acquisition, hw_stop_acquisition }; // vim:noexpandtab:ts=8 sts=8 sw=8