/* * This file is part of the sigrok project. * * Copyright (C) 2010-2012 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include "config.h" #include "sigrok.h" #include "sigrok-internal.h" #include "saleae-logic.h" static struct fx2_profile supported_fx2[] = { /* Saleae Logic */ { 0x0925, 0x3881, 0x0925, 0x3881, "Saleae", "Logic", NULL, 8 }, /* default Cypress FX2 without EEPROM */ { 0x04b4, 0x8613, 0x0925, 0x3881, "Cypress", "FX2", NULL, 16 }, { 0, 0, 0, 0, 0, 0, 0, 0 } }; static int hwcaps[] = { SR_HWCAP_LOGIC_ANALYZER, SR_HWCAP_SAMPLERATE, /* These are really implemented in the driver, not the hardware. */ SR_HWCAP_LIMIT_SAMPLES, SR_HWCAP_CONTINUOUS, 0, }; /* * Probes are numbered 1-8. * * TODO: FX2 eval boards with the standard Cypress VID/PID can have 16 pins * or probes in theory, which is not supported by the Saleae Logic firmware. */ static const char *probe_names[] = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", NULL, }; static uint64_t supported_samplerates[] = { SR_KHZ(200), SR_KHZ(250), SR_KHZ(500), SR_MHZ(1), SR_MHZ(2), SR_MHZ(4), SR_MHZ(8), SR_MHZ(12), SR_MHZ(16), SR_MHZ(24), 0, }; static struct sr_samplerates samplerates = { SR_KHZ(200), SR_MHZ(24), SR_HZ(0), supported_samplerates, }; /* List of struct sr_dev_inst, maintained by dev_open()/dev_close(). */ static GSList *dev_insts = NULL; static libusb_context *usb_context = NULL; static int new_saleae_logic_firmware = 0; static int hw_dev_config_set(int dev_index, int hwcap, void *value); static int hw_dev_acquisition_stop(int dev_index, gpointer session_dev_id); /** * Check the USB configuration to determine if this is a Saleae Logic. * * @return 1 if the device's configuration profile match the Logic firmware's * configuration, 0 otherwise. */ static int check_conf_profile(libusb_device *dev) { struct libusb_device_descriptor des; struct libusb_config_descriptor *conf_dsc = NULL; const struct libusb_interface_descriptor *intf_dsc; int ret = -1; while (ret == -1) { /* Assume it's not a Saleae Logic unless proven wrong. */ ret = 0; if (libusb_get_device_descriptor(dev, &des) != 0) break; if (des.bNumConfigurations != 1) /* Need exactly 1 configuration. */ break; if (libusb_get_config_descriptor(dev, 0, &conf_dsc) != 0) break; if (conf_dsc->bNumInterfaces != 1) /* Need exactly 1 interface. */ break; if (conf_dsc->interface[0].num_altsetting != 1) /* Need just one alternate setting. */ break; intf_dsc = &(conf_dsc->interface[0].altsetting[0]); if (intf_dsc->bNumEndpoints == 4) { /* The new Saleae Logic firmware has 4 endpoints. */ new_saleae_logic_firmware = 1; } else if (intf_dsc->bNumEndpoints == 2) { /* The old Saleae Logic firmware has 2 endpoints. */ new_saleae_logic_firmware = 0; } else { /* Other number of endpoints -> not a Saleae Logic. */ break; } if ((intf_dsc->endpoint[0].bEndpointAddress & 0x8f) != (1 | LIBUSB_ENDPOINT_OUT)) /* The first endpoint should be 1 (outbound). */ break; if ((intf_dsc->endpoint[1].bEndpointAddress & 0x8f) != (2 | LIBUSB_ENDPOINT_IN)) /* The second endpoint should be 2 (inbound). */ break; /* TODO: The new firmware has 4 endpoints... */ /* If we made it here, it must be a Saleae Logic. */ ret = 1; } if (conf_dsc) libusb_free_config_descriptor(conf_dsc); return ret; } static int sl_open_dev(int dev_index) { libusb_device **devlist; struct libusb_device_descriptor des; struct sr_dev_inst *sdi; struct context *ctx; int err, skip, i; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return SR_ERR; ctx = sdi->priv; if (sdi->status == SR_ST_ACTIVE) /* already in use */ return SR_ERR; skip = 0; libusb_get_device_list(usb_context, &devlist); for (i = 0; devlist[i]; i++) { if ((err = libusb_get_device_descriptor(devlist[i], &des))) { sr_err("logic: failed to get device descriptor: %d", err); continue; } if (des.idVendor != ctx->profile->fw_vid || des.idProduct != ctx->profile->fw_pid) continue; if (sdi->status == SR_ST_INITIALIZING) { if (skip != dev_index) { /* Skip devices of this type that aren't the one we want. */ skip += 1; continue; } } else if (sdi->status == SR_ST_INACTIVE) { /* * This device is fully enumerated, so we need to find * this device by vendor, product, bus and address. */ if (libusb_get_bus_number(devlist[i]) != ctx->usb->bus || libusb_get_device_address(devlist[i]) != ctx->usb->address) /* this is not the one */ continue; } if (!(err = libusb_open(devlist[i], &ctx->usb->devhdl))) { if (ctx->usb->address == 0xff) /* * first time we touch this device after firmware upload, * so we don't know the address yet. */ ctx->usb->address = libusb_get_device_address(devlist[i]); sdi->status = SR_ST_ACTIVE; sr_info("logic: opened device %d on %d.%d interface %d", sdi->index, ctx->usb->bus, ctx->usb->address, USB_INTERFACE); } else { sr_err("logic: failed to open device: %d", err); } /* if we made it here, we handled the device one way or another */ break; } libusb_free_device_list(devlist, 1); if (sdi->status != SR_ST_ACTIVE) return SR_ERR; return SR_OK; } static void close_dev(struct sr_dev_inst *sdi) { struct context *ctx; ctx = sdi->priv; if (ctx->usb->devhdl == NULL) return; sr_info("logic: closing device %d on %d.%d interface %d", sdi->index, ctx->usb->bus, ctx->usb->address, USB_INTERFACE); libusb_release_interface(ctx->usb->devhdl, USB_INTERFACE); libusb_close(ctx->usb->devhdl); ctx->usb->devhdl = NULL; sdi->status = SR_ST_INACTIVE; } static int configure_probes(struct context *ctx, GSList *probes) { struct sr_probe *probe; GSList *l; int probe_bit, stage, i; char *tc; ctx->probe_mask = 0; for (i = 0; i < NUM_TRIGGER_STAGES; i++) { ctx->trigger_mask[i] = 0; ctx->trigger_value[i] = 0; } stage = -1; for (l = probes; l; l = l->next) { probe = (struct sr_probe *)l->data; if (probe->enabled == FALSE) continue; probe_bit = 1 << (probe->index - 1); ctx->probe_mask |= probe_bit; if (!(probe->trigger)) continue; stage = 0; for (tc = probe->trigger; *tc; tc++) { ctx->trigger_mask[stage] |= probe_bit; if (*tc == '1') ctx->trigger_value[stage] |= probe_bit; stage++; if (stage > NUM_TRIGGER_STAGES) return SR_ERR; } } if (stage == -1) /* * We didn't configure any triggers, make sure acquisition * doesn't wait for any. */ ctx->trigger_stage = TRIGGER_FIRED; else ctx->trigger_stage = 0; return SR_OK; } static struct context *fx2_dev_new(void) { struct context *ctx; if (!(ctx = g_try_malloc0(sizeof(struct context)))) { sr_err("logic: %s: ctx malloc failed", __func__); return NULL; } ctx->trigger_stage = TRIGGER_FIRED; ctx->usb = NULL; return ctx; } /* * API callbacks */ static int hw_init(const char *devinfo) { struct sr_dev_inst *sdi; struct libusb_device_descriptor des; struct fx2_profile *fx2_prof; struct context *ctx; libusb_device **devlist; int err, devcnt, i, j; /* Avoid compiler warnings. */ (void)devinfo; if (libusb_init(&usb_context) != 0) { sr_err("logic: Failed to initialize USB."); return 0; } /* Find all Saleae Logic devices and upload firmware to all of them. */ devcnt = 0; libusb_get_device_list(usb_context, &devlist); for (i = 0; devlist[i]; i++) { fx2_prof = NULL; err = libusb_get_device_descriptor(devlist[i], &des); if (err != 0) { sr_err("logic: failed to get device descriptor: %d", err); continue; } for (j = 0; supported_fx2[j].orig_vid; j++) { if (des.idVendor == supported_fx2[j].orig_vid && des.idProduct == supported_fx2[j].orig_pid) { fx2_prof = &supported_fx2[j]; break; } } if (!fx2_prof) /* not a supported VID/PID */ continue; sdi = sr_dev_inst_new(devcnt, SR_ST_INITIALIZING, fx2_prof->vendor, fx2_prof->model, fx2_prof->model_version); if (!sdi) return 0; ctx = fx2_dev_new(); ctx->profile = fx2_prof; sdi->priv = ctx; dev_insts = g_slist_append(dev_insts, sdi); if (check_conf_profile(devlist[i])) { /* Already has the firmware, so fix the new address. */ sr_dbg("logic: Found a Saleae Logic with %s firmware.", new_saleae_logic_firmware ? "new" : "old"); sdi->status = SR_ST_INACTIVE; ctx->usb = sr_usb_dev_inst_new (libusb_get_bus_number(devlist[i]), libusb_get_device_address(devlist[i]), NULL); } else { if (ezusb_upload_firmware(devlist[i], USB_CONFIGURATION, FIRMWARE) == SR_OK) /* Remember when the firmware on this device was updated */ g_get_current_time(&ctx->fw_updated); else sr_err("logic: firmware upload failed for " "device %d", devcnt); ctx->usb = sr_usb_dev_inst_new (libusb_get_bus_number(devlist[i]), 0xff, NULL); } devcnt++; } libusb_free_device_list(devlist, 1); return devcnt; } static int hw_dev_open(int dev_index) { GTimeVal cur_time; struct sr_dev_inst *sdi; struct context *ctx; int timediff, err; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return SR_ERR; ctx = sdi->priv; /* * if the firmware was recently uploaded, wait up to MAX_RENUM_DELAY ms * for the FX2 to renumerate */ err = 0; if (GTV_TO_MSEC(ctx->fw_updated) > 0) { sr_info("logic: waiting for device to reset"); /* takes at least 300ms for the FX2 to be gone from the USB bus */ g_usleep(300 * 1000); timediff = 0; while (timediff < MAX_RENUM_DELAY) { if ((err = sl_open_dev(dev_index)) == SR_OK) break; g_usleep(100 * 1000); g_get_current_time(&cur_time); timediff = GTV_TO_MSEC(cur_time) - GTV_TO_MSEC(ctx->fw_updated); } sr_info("logic: device came back after %d ms", timediff); } else { err = sl_open_dev(dev_index); } if (err != SR_OK) { sr_err("logic: unable to open device"); return SR_ERR; } ctx = sdi->priv; err = libusb_claim_interface(ctx->usb->devhdl, USB_INTERFACE); if (err != 0) { sr_err("logic: Unable to claim interface: %d", err); return SR_ERR; } if (ctx->cur_samplerate == 0) { /* Samplerate hasn't been set; default to the slowest one. */ if (hw_dev_config_set(dev_index, SR_HWCAP_SAMPLERATE, &supported_samplerates[0]) == SR_ERR) return SR_ERR; } return SR_OK; } static int hw_dev_close(int dev_index) { struct sr_dev_inst *sdi; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("logic: %s: sdi was NULL", __func__); return SR_ERR; /* TODO: SR_ERR_ARG? */ } /* TODO */ close_dev(sdi); return SR_OK; } static int hw_cleanup(void) { GSList *l; struct sr_dev_inst *sdi; struct context *ctx; int ret = SR_OK; /* Properly close and free all devices. */ for (l = dev_insts; l; l = l->next) { if (!(sdi = l->data)) { /* Log error, but continue cleaning up the rest. */ sr_err("logic: %s: sdi was NULL, continuing", __func__); ret = SR_ERR_BUG; continue; } if (!(ctx = sdi->priv)) { /* Log error, but continue cleaning up the rest. */ sr_err("logic: %s: sdi->priv was NULL, continuing", __func__); ret = SR_ERR_BUG; continue; } close_dev(sdi); sr_usb_dev_inst_free(ctx->usb); sr_dev_inst_free(sdi); } g_slist_free(dev_insts); dev_insts = NULL; if (usb_context) libusb_exit(usb_context); usb_context = NULL; return ret; } static void *hw_dev_info_get(int dev_index, int dev_info_id) { struct sr_dev_inst *sdi; struct context *ctx; void *info = NULL; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return NULL; ctx = sdi->priv; switch (dev_info_id) { case SR_DI_INST: info = sdi; break; case SR_DI_NUM_PROBES: info = GINT_TO_POINTER(ctx->profile->num_probes); break; case SR_DI_PROBE_NAMES: info = probe_names; break; case SR_DI_SAMPLERATES: info = &samplerates; break; case SR_DI_TRIGGER_TYPES: info = TRIGGER_TYPES; break; case SR_DI_CUR_SAMPLERATE: info = &ctx->cur_samplerate; break; } return info; } static int hw_dev_status_get(int dev_index) { struct sr_dev_inst *sdi; sdi = sr_dev_inst_get(dev_insts, dev_index); if (sdi) return sdi->status; else return SR_ST_NOT_FOUND; } static int *hw_hwcap_get_all(void) { return hwcaps; } static uint8_t new_firmware_divider_value(uint64_t samplerate) { switch (samplerate) { case SR_MHZ(24): return 0xe0; break; case SR_MHZ(16): return 0xd5; break; case SR_MHZ(12): return 0xe2; break; case SR_MHZ(8): return 0xd4; break; case SR_MHZ(4): return 0xda; break; case SR_MHZ(2): return 0xe6; break; case SR_MHZ(1): return 0x8e; break; case SR_KHZ(500): return 0xfe; break; case SR_KHZ(250): return 0x9e; break; case SR_KHZ(200): return 0x4e; break; } /* Shouldn't happen. */ sr_err("logic: %s: Invalid samplerate %" PRIu64 "", __func__, samplerate); return 0; } static int set_samplerate(struct sr_dev_inst *sdi, uint64_t samplerate) { struct context *ctx; uint8_t divider; int ret, result, i; unsigned char buf[2]; ctx = sdi->priv; for (i = 0; supported_samplerates[i]; i++) { if (supported_samplerates[i] == samplerate) break; } if (supported_samplerates[i] == 0) return SR_ERR_SAMPLERATE; if (new_saleae_logic_firmware) divider = new_firmware_divider_value(samplerate); else divider = (uint8_t) (48 / (samplerate / 1000000.0)) - 1; sr_info("logic: setting samplerate to %" PRIu64 " Hz (divider %d)", samplerate, divider); buf[0] = (new_saleae_logic_firmware) ? 0xd5 : 0x01; buf[1] = divider; ret = libusb_bulk_transfer(ctx->usb->devhdl, 1 | LIBUSB_ENDPOINT_OUT, buf, 2, &result, 500); if (ret != 0) { sr_err("logic: failed to set samplerate: %d", ret); return SR_ERR; } ctx->cur_samplerate = samplerate; return SR_OK; } static int hw_dev_config_set(int dev_index, int hwcap, void *value) { struct sr_dev_inst *sdi; struct context *ctx; int ret; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return SR_ERR; ctx = sdi->priv; if (hwcap == SR_HWCAP_SAMPLERATE) { ret = set_samplerate(sdi, *(uint64_t *)value); } else if (hwcap == SR_HWCAP_PROBECONFIG) { ret = configure_probes(ctx, (GSList *) value); } else if (hwcap == SR_HWCAP_LIMIT_SAMPLES) { ctx->limit_samples = *(uint64_t *)value; ret = SR_OK; } else { ret = SR_ERR; } return ret; } static int receive_data(int fd, int revents, void *user_data) { struct timeval tv; /* Avoid compiler warnings. */ (void)fd; (void)revents; (void)user_data; tv.tv_sec = tv.tv_usec = 0; libusb_handle_events_timeout(usb_context, &tv); return TRUE; } static void receive_transfer(struct libusb_transfer *transfer) { /* TODO: These statics have to move to the ctx struct. */ static int num_samples = 0; static int empty_transfer_count = 0; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; struct context *ctx; int cur_buflen, trigger_offset, i; unsigned char *cur_buf, *new_buf; /* hw_dev_acquisition_stop() is telling us to stop. */ if (transfer == NULL) num_samples = -1; /* * If acquisition has already ended, just free any queued up * transfer that come in. */ if (num_samples == -1) { if (transfer) libusb_free_transfer(transfer); return; } sr_info("logic: receive_transfer(): status %d received %d bytes", transfer->status, transfer->actual_length); /* Save incoming transfer before reusing the transfer struct. */ cur_buf = transfer->buffer; cur_buflen = transfer->actual_length; ctx = transfer->user_data; /* Fire off a new request. */ if (!(new_buf = g_try_malloc(4096))) { sr_err("logic: %s: new_buf malloc failed", __func__); return; /* TODO: SR_ERR_MALLOC */ } transfer->buffer = new_buf; transfer->length = 4096; if (libusb_submit_transfer(transfer) != 0) { /* TODO: Stop session? */ /* TODO: Better error message. */ sr_err("logic: %s: libusb_submit_transfer error", __func__); } if (cur_buflen == 0) { empty_transfer_count++; if (empty_transfer_count > MAX_EMPTY_TRANSFERS) { /* * The FX2 gave up. End the acquisition, the frontend * will work out that the samplecount is short. */ hw_dev_acquisition_stop(-1, ctx->session_data); } return; } else { empty_transfer_count = 0; } trigger_offset = 0; if (ctx->trigger_stage >= 0) { for (i = 0; i < cur_buflen; i++) { if ((cur_buf[i] & ctx->trigger_mask[ctx->trigger_stage]) == ctx->trigger_value[ctx->trigger_stage]) { /* Match on this trigger stage. */ ctx->trigger_buffer[ctx->trigger_stage] = cur_buf[i]; ctx->trigger_stage++; if (ctx->trigger_stage == NUM_TRIGGER_STAGES || ctx->trigger_mask[ctx->trigger_stage] == 0) { /* Match on all trigger stages, we're done. */ trigger_offset = i + 1; /* * TODO: Send pre-trigger buffer to session bus. * Tell the frontend we hit the trigger here. */ packet.type = SR_DF_TRIGGER; packet.payload = NULL; sr_session_bus(ctx->session_data, &packet); /* * Send the samples that triggered it, since we're * skipping past them. */ packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = ctx->trigger_stage; logic.unitsize = 1; logic.data = ctx->trigger_buffer; sr_session_bus(ctx->session_data, &packet); ctx->trigger_stage = TRIGGER_FIRED; break; } return; } /* * We had a match before, but not in the next sample. However, we may * have a match on this stage in the next bit -- trigger on 0001 will * fail on seeing 00001, so we need to go back to stage 0 -- but at * the next sample from the one that matched originally, which the * counter increment at the end of the loop takes care of. */ if (ctx->trigger_stage > 0) { i -= ctx->trigger_stage; if (i < -1) i = -1; /* Oops, went back past this buffer. */ /* Reset trigger stage. */ ctx->trigger_stage = 0; } } } if (ctx->trigger_stage == TRIGGER_FIRED) { /* Send the incoming transfer to the session bus. */ packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = cur_buflen - trigger_offset; logic.unitsize = 1; logic.data = cur_buf + trigger_offset; sr_session_bus(ctx->session_data, &packet); g_free(cur_buf); num_samples += cur_buflen; if (ctx->limit_samples && (unsigned int) num_samples > ctx->limit_samples) { hw_dev_acquisition_stop(-1, ctx->session_data); } } else { /* * TODO: Buffer pre-trigger data in capture * ratio-sized buffer. */ } } static int hw_dev_acquisition_start(int dev_index, gpointer session_data) { struct sr_dev_inst *sdi; struct sr_datafeed_packet *packet; struct sr_datafeed_header *header; struct context *ctx; struct libusb_transfer *transfer; const struct libusb_pollfd **lupfd; int size, i; unsigned char *buf; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return SR_ERR; ctx = sdi->priv; ctx->session_data = session_data; if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) { sr_err("logic: %s: packet malloc failed", __func__); return SR_ERR_MALLOC; } if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) { sr_err("logic: %s: header malloc failed", __func__); return SR_ERR_MALLOC; } /* Start with 2K transfer, subsequently increased to 4K. */ size = 2048; for (i = 0; i < NUM_SIMUL_TRANSFERS; i++) { if (!(buf = g_try_malloc(size))) { sr_err("logic: %s: buf malloc failed", __func__); return SR_ERR_MALLOC; } transfer = libusb_alloc_transfer(0); libusb_fill_bulk_transfer(transfer, ctx->usb->devhdl, 2 | LIBUSB_ENDPOINT_IN, buf, size, receive_transfer, ctx, 40); if (libusb_submit_transfer(transfer) != 0) { /* TODO: Free them all. */ libusb_free_transfer(transfer); g_free(buf); return SR_ERR; } size = 4096; } lupfd = libusb_get_pollfds(usb_context); for (i = 0; lupfd[i]; i++) sr_source_add(lupfd[i]->fd, lupfd[i]->events, 40, receive_data, NULL); free(lupfd); /* NOT g_free()! */ packet->type = SR_DF_HEADER; packet->payload = header; header->feed_version = 1; gettimeofday(&header->starttime, NULL); header->samplerate = ctx->cur_samplerate; header->num_logic_probes = ctx->profile->num_probes; sr_session_bus(session_data, packet); g_free(header); g_free(packet); return SR_OK; } /* This stops acquisition on ALL devices, ignoring dev_index. */ static int hw_dev_acquisition_stop(int dev_index, gpointer session_data) { struct sr_datafeed_packet packet; /* Avoid compiler warnings. */ (void)dev_index; packet.type = SR_DF_END; sr_session_bus(session_data, &packet); receive_transfer(NULL); /* TODO: Need to cancel and free any queued up transfers. */ return SR_OK; } SR_PRIV struct sr_dev_plugin saleae_logic_plugin_info = { .name = "saleae-logic", .longname = "Saleae Logic", .api_version = 1, .init = hw_init, .cleanup = hw_cleanup, .dev_open = hw_dev_open, .dev_close = hw_dev_close, .dev_info_get = hw_dev_info_get, .dev_status_get = hw_dev_status_get, .hwcap_get_all = hw_hwcap_get_all, .dev_config_set = hw_dev_config_set, .dev_acquisition_start = hw_dev_acquisition_start, .dev_acquisition_stop = hw_dev_acquisition_stop, };