/* * This file is part of the sigrok project. * * Copyright (C) 2010-2012 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include "config.h" #include "sigrok.h" #include "sigrok-internal.h" #include "analyzer.h" #define USB_VENDOR 0x0c12 #define USB_VENDOR_NAME "Zeroplus" #define USB_MODEL_NAME "Logic Cube" #define USB_MODEL_VERSION "" #define USB_INTERFACE 0 #define USB_CONFIGURATION 1 #define NUM_TRIGGER_STAGES 4 #define TRIGGER_TYPES "01" #define PACKET_SIZE 2048 /* ?? */ typedef struct { unsigned short pid; char model_name[64]; unsigned int channels; unsigned int sample_depth; /* In Ksamples/channel */ unsigned int max_sampling_freq; } model_t; /* * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the * same 128K sample depth. */ static model_t zeroplus_models[] = { {0x7009, "LAP-C(16064)", 16, 64, 100}, {0x700A, "LAP-C(16128)", 16, 128, 200}, {0x700B, "LAP-C(32128)", 32, 128, 200}, {0x700C, "LAP-C(321000)", 32, 1024, 200}, {0x700D, "LAP-C(322000)", 32, 2048, 200}, {0x700E, "LAP-C(16032)", 16, 32, 100}, {0x7016, "LAP-C(162000)", 16, 2048, 200}, }; static int hwcaps[] = { SR_HWCAP_LOGIC_ANALYZER, SR_HWCAP_SAMPLERATE, SR_HWCAP_PROBECONFIG, SR_HWCAP_CAPTURE_RATIO, /* These are really implemented in the driver, not the hardware. */ SR_HWCAP_LIMIT_SAMPLES, 0, }; /* * ZEROPLUS LAP-C (16032) numbers the 16 probes A0-A7 and B0-B7. * We currently ignore other untested/unsupported devices here. */ static const char *probe_names[] = { "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7", NULL, }; /* List of struct sr_dev_inst, maintained by dev_open()/dev_close(). */ static GSList *dev_insts = NULL; static libusb_context *usb_context = NULL; /* * The hardware supports more samplerates than these, but these are the * options hardcoded into the vendor's Windows GUI. */ /* * TODO: We shouldn't support 150MHz and 200MHz on devices that don't go up * that high. */ static uint64_t supported_samplerates[] = { SR_HZ(100), SR_HZ(500), SR_KHZ(1), SR_KHZ(5), SR_KHZ(25), SR_KHZ(50), SR_KHZ(100), SR_KHZ(200), SR_KHZ(400), SR_KHZ(800), SR_MHZ(1), SR_MHZ(10), SR_MHZ(25), SR_MHZ(50), SR_MHZ(80), SR_MHZ(100), SR_MHZ(150), SR_MHZ(200), 0, }; static struct sr_samplerates samplerates = { SR_HZ(0), SR_HZ(0), SR_HZ(0), supported_samplerates, }; /* Private, per-device-instance driver context. */ struct context { uint64_t cur_samplerate; uint64_t limit_samples; int num_channels; /* TODO: This isn't initialized before it's needed :( */ uint64_t memory_size; uint8_t probe_mask; uint8_t trigger_mask[NUM_TRIGGER_STAGES]; uint8_t trigger_value[NUM_TRIGGER_STAGES]; // uint8_t trigger_buffer[NUM_TRIGGER_STAGES]; struct sr_usb_dev_inst *usb; }; static int hw_dev_config_set(int dev_index, int hwcap, void *value); static unsigned int get_memory_size(int type) { if (type == MEMORY_SIZE_8K) return 8 * 1024; else if (type == MEMORY_SIZE_64K) return 64 * 1024; else if (type == MEMORY_SIZE_128K) return 128 * 1024; else if (type == MEMORY_SIZE_512K) return 512 * 1024; else return 0; } static int opendev4(struct sr_dev_inst **sdi, libusb_device *dev, struct libusb_device_descriptor *des) { struct context *ctx; unsigned int i; int ret; /* Note: sdi is non-NULL, the caller already checked this. */ if (!(ctx = (*sdi)->priv)) { sr_err("zp: %s: (*sdi)->priv was NULL", __func__); return -1; } if ((ret = libusb_get_device_descriptor(dev, des))) { sr_err("zp: failed to get device descriptor: %d", ret); return -1; } if (des->idVendor != USB_VENDOR) return 0; if (libusb_get_bus_number(dev) == ctx->usb->bus && libusb_get_device_address(dev) == ctx->usb->address) { for (i = 0; i < ARRAY_SIZE(zeroplus_models); i++) { if (!(des->idProduct == zeroplus_models[i].pid)) continue; sr_info("zp: Found ZeroPlus device 0x%04x (%s)", des->idProduct, zeroplus_models[i].model_name); ctx->num_channels = zeroplus_models[i].channels; ctx->memory_size = zeroplus_models[i].sample_depth * 1024; break; } if (ctx->num_channels == 0) { sr_err("zp: Unknown ZeroPlus device 0x%04x", des->idProduct); return -2; } /* Found it. */ if (!(ret = libusb_open(dev, &(ctx->usb->devhdl)))) { (*sdi)->status = SR_ST_ACTIVE; sr_info("zp: opened device %d on %d.%d interface %d", (*sdi)->index, ctx->usb->bus, ctx->usb->address, USB_INTERFACE); } else { sr_err("zp: failed to open device: %d", ret); *sdi = NULL; } } return 0; } static struct sr_dev_inst *zp_open_dev(int dev_index) { struct sr_dev_inst *sdi; libusb_device **devlist; struct libusb_device_descriptor des; int i; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) return NULL; libusb_get_device_list(usb_context, &devlist); if (sdi->status == SR_ST_INACTIVE) { /* Find the device by vendor, product, bus and address. */ libusb_get_device_list(usb_context, &devlist); for (i = 0; devlist[i]; i++) { /* TODO: Error handling. */ opendev4(&sdi, devlist[i], &des); } } else { /* Status must be SR_ST_ACTIVE, i.e. already in use... */ sdi = NULL; } libusb_free_device_list(devlist, 1); if (sdi && sdi->status != SR_ST_ACTIVE) sdi = NULL; return sdi; } static void close_dev(struct sr_dev_inst *sdi) { struct context *ctx; if (!(ctx = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return; /* FIXME */ } if (!ctx->usb->devhdl) return; sr_info("zp: closing device %d on %d.%d interface %d", sdi->index, ctx->usb->bus, ctx->usb->address, USB_INTERFACE); libusb_release_interface(ctx->usb->devhdl, USB_INTERFACE); libusb_reset_device(ctx->usb->devhdl); libusb_close(ctx->usb->devhdl); ctx->usb->devhdl = NULL; /* TODO: Call libusb_exit() here or only in hw_cleanup()? */ sdi->status = SR_ST_INACTIVE; } static int configure_probes(struct sr_dev_inst *sdi, GSList *probes) { struct context *ctx; struct sr_probe *probe; GSList *l; int probe_bit, stage, i; char *tc; /* Note: sdi and sdi->priv are non-NULL, the caller checked this. */ ctx = sdi->priv; ctx->probe_mask = 0; for (i = 0; i < NUM_TRIGGER_STAGES; i++) { ctx->trigger_mask[i] = 0; ctx->trigger_value[i] = 0; } stage = -1; for (l = probes; l; l = l->next) { probe = (struct sr_probe *)l->data; if (probe->enabled == FALSE) continue; probe_bit = 1 << (probe->index - 1); ctx->probe_mask |= probe_bit; if (probe->trigger) { stage = 0; for (tc = probe->trigger; *tc; tc++) { ctx->trigger_mask[stage] |= probe_bit; if (*tc == '1') ctx->trigger_value[stage] |= probe_bit; stage++; if (stage > NUM_TRIGGER_STAGES) return SR_ERR; } } } return SR_OK; } /* * API callbacks */ static int hw_init(const char *devinfo) { struct sr_dev_inst *sdi; struct libusb_device_descriptor des; libusb_device **devlist; int ret, devcnt, i; struct context *ctx; /* Avoid compiler warnings. */ (void)devinfo; /* Allocate memory for our private driver context. */ if (!(ctx = g_try_malloc(sizeof(struct context)))) { sr_err("zp: %s: ctx malloc failed", __func__); return 0; } /* Set some sane defaults. */ ctx->cur_samplerate = 0; ctx->limit_samples = 0; ctx->num_channels = 32; /* TODO: This isn't initialized before it's needed :( */ ctx->memory_size = 0; ctx->probe_mask = 0; memset(ctx->trigger_mask, 0, NUM_TRIGGER_STAGES); memset(ctx->trigger_value, 0, NUM_TRIGGER_STAGES); // memset(ctx->trigger_buffer, 0, NUM_TRIGGER_STAGES); if (libusb_init(&usb_context) != 0) { sr_err("zp: Failed to initialize USB."); return 0; } /* Find all ZeroPlus analyzers and add them to device list. */ devcnt = 0; libusb_get_device_list(usb_context, &devlist); /* TODO: Errors. */ for (i = 0; devlist[i]; i++) { ret = libusb_get_device_descriptor(devlist[i], &des); if (ret != 0) { sr_err("zp: failed to get device descriptor: %d", ret); continue; } if (des.idVendor == USB_VENDOR) { /* * Definitely a Zeroplus. * TODO: Any way to detect specific model/version in * the zeroplus range? */ /* Register the device with libsigrok. */ if (!(sdi = sr_dev_inst_new(devcnt, SR_ST_INACTIVE, USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION))) { sr_err("zp: %s: sr_dev_inst_new failed", __func__); return 0; } sdi->priv = ctx; dev_insts = g_slist_append(dev_insts, sdi); ctx->usb = sr_usb_dev_inst_new( libusb_get_bus_number(devlist[i]), libusb_get_device_address(devlist[i]), NULL); devcnt++; } } libusb_free_device_list(devlist, 1); return devcnt; } static int hw_dev_open(int dev_index) { struct sr_dev_inst *sdi; struct context *ctx; int ret; if (!(sdi = zp_open_dev(dev_index))) { sr_err("zp: unable to open device"); return SR_ERR; } /* TODO: Note: sdi is retrieved in zp_open_dev(). */ if (!(ctx = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return SR_ERR_ARG; } ret = libusb_set_configuration(ctx->usb->devhdl, USB_CONFIGURATION); if (ret < 0) { sr_err("zp: Unable to set USB configuration %d: %d", USB_CONFIGURATION, ret); return SR_ERR; } ret = libusb_claim_interface(ctx->usb->devhdl, USB_INTERFACE); if (ret != 0) { sr_err("zp: Unable to claim interface: %d", ret); return SR_ERR; } analyzer_reset(ctx->usb->devhdl); analyzer_initialize(ctx->usb->devhdl); analyzer_set_memory_size(MEMORY_SIZE_512K); // analyzer_set_freq(g_freq, g_freq_scale); analyzer_set_trigger_count(1); // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger) // * get_memory_size(g_memory_size)) / 100) >> 2); analyzer_set_ramsize_trigger_address( (100 * get_memory_size(MEMORY_SIZE_512K) / 100) >> 2); #if 0 if (g_double_mode == 1) analyzer_set_compression(COMPRESSION_DOUBLE); else if (g_compression == 1) analyzer_set_compression(COMPRESSION_ENABLE); else #endif analyzer_set_compression(COMPRESSION_NONE); if (ctx->cur_samplerate == 0) { /* Samplerate hasn't been set. Default to the slowest one. */ if (hw_dev_config_set(dev_index, SR_HWCAP_SAMPLERATE, &samplerates.list[0]) == SR_ERR) return SR_ERR; } return SR_OK; } static int hw_dev_close(int dev_index) { struct sr_dev_inst *sdi; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("zp: %s: sdi was NULL", __func__); return SR_ERR; /* TODO: SR_ERR_ARG? */ } /* TODO */ close_dev(sdi); return SR_OK; } static int hw_cleanup(void) { GSList *l; struct sr_dev_inst *sdi; for (l = dev_insts; l; l = l->next) { sdi = l->data; /* Properly close all devices... */ close_dev(sdi); /* ...and free all their memory. */ sr_dev_inst_free(sdi); } g_slist_free(dev_insts); dev_insts = NULL; if (usb_context) libusb_exit(usb_context); usb_context = NULL; return SR_OK; } static void *hw_dev_info_get(int dev_index, int dev_info_id) { struct sr_dev_inst *sdi; struct context *ctx; void *info; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("zp: %s: sdi was NULL", __func__); return NULL; } if (!(ctx = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return NULL; } switch (dev_info_id) { case SR_DI_INST: info = sdi; break; case SR_DI_NUM_PROBES: info = GINT_TO_POINTER(ctx->num_channels); break; case SR_DI_PROBE_NAMES: info = probe_names; break; case SR_DI_SAMPLERATES: info = &samplerates; break; case SR_DI_TRIGGER_TYPES: info = TRIGGER_TYPES; break; case SR_DI_CUR_SAMPLERATE: info = &ctx->cur_samplerate; break; default: /* Unknown device info ID, return NULL. */ sr_err("zp: %s: Unknown device info ID", __func__); info = NULL; break; } return info; } static int hw_dev_status_get(int dev_index) { struct sr_dev_inst *sdi; sdi = sr_dev_inst_get(dev_insts, dev_index); if (sdi) return sdi->status; else return SR_ST_NOT_FOUND; } static int *hw_hwcap_get_all(void) { return hwcaps; } static int set_samplerate(struct sr_dev_inst *sdi, uint64_t samplerate) { struct context *ctx; if (!sdi) { sr_err("zp: %s: sdi was NULL", __func__); return SR_ERR_ARG; } if (!(ctx = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return SR_ERR_ARG; } sr_info("zp: Setting samplerate to %" PRIu64 "Hz.", samplerate); if (samplerate > SR_MHZ(1)) analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ); else if (samplerate > SR_KHZ(1)) analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ); else analyzer_set_freq(samplerate, FREQ_SCALE_HZ); ctx->cur_samplerate = samplerate; return SR_OK; } static int hw_dev_config_set(int dev_index, int hwcap, void *value) { struct sr_dev_inst *sdi; struct context *ctx; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("zp: %s: sdi was NULL", __func__); return SR_ERR; } if (!(ctx = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return SR_ERR_ARG; } switch (hwcap) { case SR_HWCAP_SAMPLERATE: return set_samplerate(sdi, *(uint64_t *)value); case SR_HWCAP_PROBECONFIG: return configure_probes(sdi, (GSList *)value); case SR_HWCAP_LIMIT_SAMPLES: ctx->limit_samples = *(uint64_t *)value; return SR_OK; default: return SR_ERR; } } static int hw_dev_acquisition_start(int dev_index, void *cb_data) { struct sr_dev_inst *sdi; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; struct sr_datafeed_header header; uint64_t samples_read; int res; unsigned int packet_num; unsigned char *buf; struct context *ctx; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("zp: %s: sdi was NULL", __func__); return SR_ERR; } if (!(ctx = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return SR_ERR_ARG; } /* push configured settings to device */ analyzer_configure(ctx->usb->devhdl); analyzer_start(ctx->usb->devhdl); sr_info("zp: Waiting for data"); analyzer_wait_data(ctx->usb->devhdl); sr_info("zp: Stop address = 0x%x", analyzer_get_stop_address(ctx->usb->devhdl)); sr_info("zp: Now address = 0x%x", analyzer_get_now_address(ctx->usb->devhdl)); sr_info("zp: Trigger address = 0x%x", analyzer_get_trigger_address(ctx->usb->devhdl)); packet.type = SR_DF_HEADER; packet.payload = &header; header.feed_version = 1; gettimeofday(&header.starttime, NULL); header.samplerate = ctx->cur_samplerate; header.num_logic_probes = ctx->num_channels; sr_session_send(cb_data, &packet); if (!(buf = g_try_malloc(PACKET_SIZE))) { sr_err("zp: %s: buf malloc failed", __func__); return SR_ERR_MALLOC; } samples_read = 0; analyzer_read_start(ctx->usb->devhdl); /* Send the incoming transfer to the session bus. */ for (packet_num = 0; packet_num < (ctx->memory_size * 4 / PACKET_SIZE); packet_num++) { res = analyzer_read_data(ctx->usb->devhdl, buf, PACKET_SIZE); sr_info("zp: Tried to read %llx bytes, actually read %x bytes", PACKET_SIZE, res); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = PACKET_SIZE; logic.unitsize = 4; logic.data = buf; sr_session_send(cb_data, &packet); samples_read += res / 4; } analyzer_read_stop(ctx->usb->devhdl); g_free(buf); packet.type = SR_DF_END; sr_session_send(cb_data, &packet); return SR_OK; } /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */ static int hw_dev_acquisition_stop(int dev_index, void *cb_data) { struct sr_datafeed_packet packet; struct sr_dev_inst *sdi; struct context *ctx; packet.type = SR_DF_END; sr_session_send(cb_data, &packet); if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("zp: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } analyzer_reset(ctx->usb->devhdl); /* TODO: Need to cancel and free any queued up transfers. */ return SR_OK; } SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = { .name = "zeroplus-logic-cube", .longname = "Zeroplus Logic Cube LAP-C series", .api_version = 1, .init = hw_init, .cleanup = hw_cleanup, .dev_open = hw_dev_open, .dev_close = hw_dev_close, .dev_info_get = hw_dev_info_get, .dev_status_get = hw_dev_status_get, .hwcap_get_all = hw_hwcap_get_all, .dev_config_set = hw_dev_config_set, .dev_acquisition_start = hw_dev_acquisition_start, .dev_acquisition_stop = hw_dev_acquisition_stop, };