/* * This file is part of the libsigrok project. * * Copyright (C) 2013 poljar (Damir Jelić) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include "scpi.h" #include "protocol.h" static const char *hameg_scpi_dialect[] = { [SCPI_CMD_GET_DIG_DATA] = ":POD%d:DATA?", [SCPI_CMD_GET_TIMEBASE] = ":TIM:SCAL?", [SCPI_CMD_SET_TIMEBASE] = ":TIM:SCAL %s", [SCPI_CMD_GET_COUPLING] = ":CHAN%d:COUP?", [SCPI_CMD_SET_COUPLING] = ":CHAN%d:COUP %s", [SCPI_CMD_GET_SAMPLE_RATE] = ":ACQ:SRAT?", [SCPI_CMD_GET_SAMPLE_RATE_LIVE] = ":%s:DATA:POINTS?", [SCPI_CMD_GET_ANALOG_DATA] = ":CHAN%d:DATA?", [SCPI_CMD_GET_VERTICAL_DIV] = ":CHAN%d:SCAL?", [SCPI_CMD_SET_VERTICAL_DIV] = ":CHAN%d:SCAL %s", [SCPI_CMD_GET_DIG_POD_STATE] = ":POD%d:STAT?", [SCPI_CMD_SET_DIG_POD_STATE] = ":POD%d:STAT %d", [SCPI_CMD_GET_TRIGGER_SLOPE] = ":TRIG:A:EDGE:SLOP?", [SCPI_CMD_SET_TRIGGER_SLOPE] = ":TRIG:A:EDGE:SLOP %s", [SCPI_CMD_GET_TRIGGER_SOURCE] = ":TRIG:A:SOUR?", [SCPI_CMD_SET_TRIGGER_SOURCE] = ":TRIG:A:SOUR %s", [SCPI_CMD_GET_DIG_CHAN_STATE] = ":LOG%d:STAT?", [SCPI_CMD_SET_DIG_CHAN_STATE] = ":LOG%d:STAT %d", [SCPI_CMD_GET_VERTICAL_OFFSET] = ":CHAN%d:POS?", [SCPI_CMD_GET_HORIZ_TRIGGERPOS] = ":TIM:POS?", [SCPI_CMD_SET_HORIZ_TRIGGERPOS] = ":TIM:POS %s", [SCPI_CMD_GET_ANALOG_CHAN_STATE] = ":CHAN%d:STAT?", [SCPI_CMD_SET_ANALOG_CHAN_STATE] = ":CHAN%d:STAT %d", }; static const uint32_t hmo_devopts[] = { SR_CONF_OSCILLOSCOPE, SR_CONF_LIMIT_FRAMES | SR_CONF_GET | SR_CONF_SET, SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_TIMEBASE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_NUM_HDIV | SR_CONF_GET, SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_HORIZ_TRIGGERPOS | SR_CONF_GET | SR_CONF_SET, SR_CONF_SAMPLERATE | SR_CONF_GET, }; static const uint32_t hmo_analog_devopts[] = { SR_CONF_NUM_VDIV | SR_CONF_GET, SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, }; static const char *hmo_coupling_options[] = { "AC", "ACL", "DC", "DCL", "GND", NULL, }; static const char *scope_trigger_slopes[] = { "POS", "NEG", "EITH", NULL, }; static const char *hmo_compact2_trigger_sources[] = { "CH1", "CH2", "LINE", "EXT", "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7", NULL, }; static const char *hmo_compact4_trigger_sources[] = { "CH1", "CH2", "CH3", "CH4", "LINE", "EXT", "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7", NULL, }; static const uint64_t hmo_timebases[][2] = { /* nanoseconds */ { 2, 1000000000 }, { 5, 1000000000 }, { 10, 1000000000 }, { 20, 1000000000 }, { 50, 1000000000 }, { 100, 1000000000 }, { 200, 1000000000 }, { 500, 1000000000 }, /* microseconds */ { 1, 1000000 }, { 2, 1000000 }, { 5, 1000000 }, { 10, 1000000 }, { 20, 1000000 }, { 50, 1000000 }, { 100, 1000000 }, { 200, 1000000 }, { 500, 1000000 }, /* milliseconds */ { 1, 1000 }, { 2, 1000 }, { 5, 1000 }, { 10, 1000 }, { 20, 1000 }, { 50, 1000 }, { 100, 1000 }, { 200, 1000 }, { 500, 1000 }, /* seconds */ { 1, 1 }, { 2, 1 }, { 5, 1 }, { 10, 1 }, { 20, 1 }, { 50, 1 }, }; static const uint64_t hmo_vdivs[][2] = { /* millivolts */ { 1, 1000 }, { 2, 1000 }, { 5, 1000 }, { 10, 1000 }, { 20, 1000 }, { 50, 1000 }, { 100, 1000 }, { 200, 1000 }, { 500, 1000 }, /* volts */ { 1, 1 }, { 2, 1 }, { 5, 1 }, { 10, 1 }, { 20, 1 }, { 50, 1 }, }; static const char *scope_analog_channel_names[] = { "CH1", "CH2", "CH3", "CH4", }; static const char *scope_digital_channel_names[] = { "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7", "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15", }; static const struct scope_config scope_models[] = { { /* HMO2522/3032/3042/3052 support 16 digital channels but they're not supported yet. */ .name = {"HMO1002", "HMO722", "HMO1022", "HMO1522", "HMO2022", "HMO2522", "HMO3032", "HMO3042", "HMO3052", NULL}, .analog_channels = 2, .digital_channels = 8, .digital_pods = 1, .analog_names = &scope_analog_channel_names, .digital_names = &scope_digital_channel_names, .devopts = &hmo_devopts, .num_devopts = ARRAY_SIZE(hmo_devopts), .analog_devopts = &hmo_analog_devopts, .num_analog_devopts = ARRAY_SIZE(hmo_analog_devopts), .coupling_options = &hmo_coupling_options, .trigger_sources = &hmo_compact2_trigger_sources, .trigger_slopes = &scope_trigger_slopes, .timebases = &hmo_timebases, .num_timebases = ARRAY_SIZE(hmo_timebases), .vdivs = &hmo_vdivs, .num_vdivs = ARRAY_SIZE(hmo_vdivs), .num_xdivs = 12, .num_ydivs = 8, .scpi_dialect = &hameg_scpi_dialect, }, { /* HMO2524/3034/3044/3054 support 16 digital channels but they're not supported yet. */ .name = {"HMO724", "HMO1024", "HMO1524", "HMO2024", "HMO2524", "HMO3034", "HMO3044", "HMO3054", NULL}, .analog_channels = 4, .digital_channels = 8, .digital_pods = 1, .analog_names = &scope_analog_channel_names, .digital_names = &scope_digital_channel_names, .devopts = &hmo_devopts, .num_devopts = ARRAY_SIZE(hmo_devopts), .analog_devopts = &hmo_analog_devopts, .num_analog_devopts = ARRAY_SIZE(hmo_analog_devopts), .coupling_options = &hmo_coupling_options, .trigger_sources = &hmo_compact4_trigger_sources, .trigger_slopes = &scope_trigger_slopes, .timebases = &hmo_timebases, .num_timebases = ARRAY_SIZE(hmo_timebases), .vdivs = &hmo_vdivs, .num_vdivs = ARRAY_SIZE(hmo_vdivs), .num_xdivs = 12, .num_ydivs = 8, .scpi_dialect = &hameg_scpi_dialect, }, }; static void scope_state_dump(const struct scope_config *config, struct scope_state *state) { unsigned int i; char *tmp; for (i = 0; i < config->analog_channels; i++) { tmp = sr_voltage_string((*config->vdivs)[state->analog_channels[i].vdiv][0], (*config->vdivs)[state->analog_channels[i].vdiv][1]); sr_info("State of analog channel %d -> %s : %s (coupling) %s (vdiv) %2.2e (offset)", i + 1, state->analog_channels[i].state ? "On" : "Off", (*config->coupling_options)[state->analog_channels[i].coupling], tmp, state->analog_channels[i].vertical_offset); } for (i = 0; i < config->digital_channels; i++) { sr_info("State of digital channel %d -> %s", i, state->digital_channels[i] ? "On" : "Off"); } for (i = 0; i < config->digital_pods; i++) { sr_info("State of digital POD %d -> %s", i, state->digital_pods[i] ? "On" : "Off"); } tmp = sr_period_string((*config->timebases)[state->timebase][0] * (*config->timebases)[state->timebase][1]); sr_info("Current timebase: %s", tmp); g_free(tmp); tmp = sr_samplerate_string(state->sample_rate); sr_info("Current samplerate: %s", tmp); g_free(tmp); sr_info("Current trigger: %s (source), %s (slope) %.2f (offset)", (*config->trigger_sources)[state->trigger_source], (*config->trigger_slopes)[state->trigger_slope], state->horiz_triggerpos); } static int scope_state_get_array_option(struct sr_scpi_dev_inst *scpi, const char *command, const char *(*array)[], int *result) { char *tmp; unsigned int i; if (sr_scpi_get_string(scpi, command, &tmp) != SR_OK) { g_free(tmp); return SR_ERR; } for (i = 0; (*array)[i]; i++) { if (!g_strcmp0(tmp, (*array)[i])) { *result = i; g_free(tmp); tmp = NULL; break; } } if (tmp) { g_free(tmp); return SR_ERR; } return SR_OK; } /** * This function takes a value of the form "2.000E-03", converts it to a * significand / factor pair and returns the index of an array where * a matching pair was found. * * It's a bit convoluted because of floating-point issues. The value "10.00E-09" * is parsed by g_ascii_strtod() as 0.000000009999999939, for example. * Therefore it's easier to break the number up into two strings and handle * them separately. * * @param value The string to be parsed. * @param array The array of s/f pairs. * @param array_len The number of pairs in the array. * @param result The index at which a matching pair was found. * * @return SR_ERR on any parsing error, SR_OK otherwise. */ static int array_float_get(gchar *value, const uint64_t array[][2], int array_len, unsigned int *result) { int i, e; size_t pos; uint64_t f; float s; unsigned int s_int; gchar ss[10], es[10]; memset(ss, 0, sizeof(ss)); memset(es, 0, sizeof(es)); /* Get index of the separating 'E' character and break up the string. */ pos = strcspn(value, "E"); strncpy(ss, value, pos); strncpy(es, &(value[pos+1]), 3); if (sr_atof_ascii(ss, &s) != SR_OK) return SR_ERR; if (sr_atoi(es, &e) != SR_OK) return SR_ERR; /* Transform e.g. 10^-03 to 1000 as the array stores the inverse. */ f = pow(10, abs(e)); /* * Adjust the significand/factor pair to make sure * that f is a multiple of 1000. */ while ((int)fmod(log10(f), 3) > 0) { s *= 10; if (e < 0) f *= 10; else f /= 10; } /* Truncate s to circumvent rounding errors. */ s_int = (unsigned int)s; for (i = 0; i < array_len; i++) { if ((s_int == array[i][0]) && (f == array[i][1])) { *result = i; return SR_OK; } } return SR_ERR; } static int analog_channel_state_get(struct sr_scpi_dev_inst *scpi, const struct scope_config *config, struct scope_state *state) { unsigned int i, j; char command[MAX_COMMAND_SIZE]; char *tmp_str; for (i = 0; i < config->analog_channels; i++) { g_snprintf(command, sizeof(command), (*config->scpi_dialect)[SCPI_CMD_GET_ANALOG_CHAN_STATE], i + 1); if (sr_scpi_get_bool(scpi, command, &state->analog_channels[i].state) != SR_OK) return SR_ERR; g_snprintf(command, sizeof(command), (*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_DIV], i + 1); if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK) return SR_ERR; if (array_float_get(tmp_str, hmo_vdivs, ARRAY_SIZE(hmo_vdivs), &j) != SR_OK) { g_free(tmp_str); sr_err("Could not determine array index for vertical div scale."); return SR_ERR; } g_free(tmp_str); state->analog_channels[i].vdiv = j; g_snprintf(command, sizeof(command), (*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_OFFSET], i + 1); if (sr_scpi_get_float(scpi, command, &state->analog_channels[i].vertical_offset) != SR_OK) return SR_ERR; g_snprintf(command, sizeof(command), (*config->scpi_dialect)[SCPI_CMD_GET_COUPLING], i + 1); if (scope_state_get_array_option(scpi, command, config->coupling_options, &state->analog_channels[i].coupling) != SR_OK) return SR_ERR; } return SR_OK; } static int digital_channel_state_get(struct sr_scpi_dev_inst *scpi, const struct scope_config *config, struct scope_state *state) { unsigned int i; char command[MAX_COMMAND_SIZE]; for (i = 0; i < config->digital_channels; i++) { g_snprintf(command, sizeof(command), (*config->scpi_dialect)[SCPI_CMD_GET_DIG_CHAN_STATE], i); if (sr_scpi_get_bool(scpi, command, &state->digital_channels[i]) != SR_OK) return SR_ERR; } for (i = 0; i < config->digital_pods; i++) { g_snprintf(command, sizeof(command), (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_STATE], i + 1); if (sr_scpi_get_bool(scpi, command, &state->digital_pods[i]) != SR_OK) return SR_ERR; } return SR_OK; } SR_PRIV int hmo_update_sample_rate(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct scope_state *state; const struct scope_config *config; int tmp; unsigned int i; float tmp_float; gboolean channel_found; char tmp_str[MAX_COMMAND_SIZE]; char chan_name[20]; devc = sdi->priv; config = devc->model_config; state = devc->model_state; channel_found = FALSE; for (i = 0; i < config->analog_channels; i++) { if (state->analog_channels[i].state) { g_snprintf(chan_name, sizeof(chan_name), "CHAN%d", i + 1); g_snprintf(tmp_str, sizeof(tmp_str), (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE_LIVE], chan_name); channel_found = TRUE; break; } } if (!channel_found) { for (i = 0; i < config->digital_pods; i++) { if (state->digital_pods[i]) { g_snprintf(chan_name, sizeof(chan_name), "POD%d", i); g_snprintf(tmp_str, sizeof(tmp_str), (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE_LIVE], chan_name); channel_found = TRUE; break; } } } /* No channel is active, ask the instrument for the sample rate * in single shot mode */ if (!channel_found) { if (sr_scpi_get_float(sdi->conn, (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE], &tmp_float) != SR_OK) return SR_ERR; state->sample_rate = tmp_float; } else { if (sr_scpi_get_int(sdi->conn, tmp_str, &tmp) != SR_OK) return SR_ERR; state->sample_rate = tmp / (((float) (*config->timebases)[state->timebase][0] / (*config->timebases)[state->timebase][1]) * config->num_xdivs); } return SR_OK; } SR_PRIV int hmo_scope_state_get(struct sr_dev_inst *sdi) { struct dev_context *devc; struct scope_state *state; const struct scope_config *config; float tmp_float; unsigned int i; char *tmp_str; devc = sdi->priv; config = devc->model_config; state = devc->model_state; sr_info("Fetching scope state"); if (analog_channel_state_get(sdi->conn, config, state) != SR_OK) return SR_ERR; if (digital_channel_state_get(sdi->conn, config, state) != SR_OK) return SR_ERR; if (sr_scpi_get_float(sdi->conn, (*config->scpi_dialect)[SCPI_CMD_GET_TIMEBASE], &tmp_float) != SR_OK) return SR_ERR; if (sr_scpi_get_string(sdi->conn, (*config->scpi_dialect)[SCPI_CMD_GET_TIMEBASE], &tmp_str) != SR_OK) return SR_ERR; if (array_float_get(tmp_str, hmo_timebases, ARRAY_SIZE(hmo_timebases), &i) != SR_OK) { g_free(tmp_str); sr_err("Could not determine array index for time base."); return SR_ERR; } state->timebase = i; if (sr_scpi_get_float(sdi->conn, (*config->scpi_dialect)[SCPI_CMD_GET_HORIZ_TRIGGERPOS], &tmp_float) != SR_OK) return SR_ERR; state->horiz_triggerpos = tmp_float / (((double) (*config->timebases)[state->timebase][0] / (*config->timebases)[state->timebase][1]) * config->num_xdivs); state->horiz_triggerpos -= 0.5; state->horiz_triggerpos *= -1; if (scope_state_get_array_option(sdi->conn, (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SOURCE], config->trigger_sources, &state->trigger_source) != SR_OK) return SR_ERR; if (scope_state_get_array_option(sdi->conn, (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SLOPE], config->trigger_slopes, &state->trigger_slope) != SR_OK) return SR_ERR; if (hmo_update_sample_rate(sdi) != SR_OK) return SR_ERR; sr_info("Fetching finished."); scope_state_dump(config, state); return SR_OK; } static struct scope_state *scope_state_new(const struct scope_config *config) { struct scope_state *state; state = g_malloc0(sizeof(struct scope_state)); state->analog_channels = g_malloc0_n(config->analog_channels, sizeof(struct analog_channel_state)); state->digital_channels = g_malloc0_n( config->digital_channels, sizeof(gboolean)); state->digital_pods = g_malloc0_n(config->digital_pods, sizeof(gboolean)); return state; } SR_PRIV void hmo_scope_state_free(struct scope_state *state) { g_free(state->analog_channels); g_free(state->digital_channels); g_free(state->digital_pods); g_free(state); } SR_PRIV int hmo_init_device(struct sr_dev_inst *sdi) { char tmp[25]; int model_index; unsigned int i, j; struct sr_channel *ch; struct dev_context *devc; devc = sdi->priv; model_index = -1; /* Find the exact model. */ for (i = 0; i < ARRAY_SIZE(scope_models); i++) { for (j = 0; scope_models[i].name[j]; j++) { if (!strcmp(sdi->model, scope_models[i].name[j])) { model_index = i; break; } } if (model_index != -1) break; } if (model_index == -1) { sr_dbg("Unsupported HMO device."); return SR_ERR_NA; } devc->analog_groups = g_malloc0(sizeof(struct sr_channel_group*) * scope_models[model_index].analog_channels); devc->digital_groups = g_malloc0(sizeof(struct sr_channel_group*) * scope_models[model_index].digital_pods); /* Add analog channels. */ for (i = 0; i < scope_models[model_index].analog_channels; i++) { ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, (*scope_models[model_index].analog_names)[i]); devc->analog_groups[i] = g_malloc0(sizeof(struct sr_channel_group)); devc->analog_groups[i]->name = g_strdup( (char *)(*scope_models[model_index].analog_names)[i]); devc->analog_groups[i]->channels = g_slist_append(NULL, ch); sdi->channel_groups = g_slist_append(sdi->channel_groups, devc->analog_groups[i]); } /* Add digital channel groups. */ for (i = 0; i < scope_models[model_index].digital_pods; i++) { g_snprintf(tmp, 25, "POD%d", i); devc->digital_groups[i] = g_malloc0(sizeof(struct sr_channel_group)); devc->digital_groups[i]->name = g_strdup(tmp); sdi->channel_groups = g_slist_append(sdi->channel_groups, devc->digital_groups[i < 8 ? 0 : 1]); } /* Add digital channels. */ for (i = 0; i < scope_models[model_index].digital_channels; i++) { ch = sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE, (*scope_models[model_index].digital_names)[i]); devc->digital_groups[i < 8 ? 0 : 1]->channels = g_slist_append( devc->digital_groups[i < 8 ? 0 : 1]->channels, ch); } devc->model_config = &scope_models[model_index]; devc->frame_limit = 0; if (!(devc->model_state = scope_state_new(devc->model_config))) return SR_ERR_MALLOC; return SR_OK; } SR_PRIV int hmo_receive_data(int fd, int revents, void *cb_data) { struct sr_channel *ch; struct sr_dev_inst *sdi; struct dev_context *devc; struct sr_datafeed_packet packet; GArray *data; struct sr_datafeed_analog_old analog; struct sr_datafeed_logic logic; (void)fd; data = NULL; if (!(sdi = cb_data)) return TRUE; if (!(devc = sdi->priv)) return TRUE; if (revents != G_IO_IN) return TRUE; ch = devc->current_channel->data; switch (ch->type) { case SR_CHANNEL_ANALOG: if (sr_scpi_get_floatv(sdi->conn, NULL, &data) != SR_OK) { if (data) g_array_free(data, TRUE); return TRUE; } packet.type = SR_DF_FRAME_BEGIN; sr_session_send(sdi, &packet); analog.channels = g_slist_append(NULL, ch); analog.num_samples = data->len; analog.data = (float *) data->data; analog.mq = SR_MQ_VOLTAGE; analog.unit = SR_UNIT_VOLT; analog.mqflags = 0; packet.type = SR_DF_ANALOG_OLD; packet.payload = &analog; sr_session_send(cb_data, &packet); g_slist_free(analog.channels); g_array_free(data, TRUE); data = NULL; break; case SR_CHANNEL_LOGIC: if (sr_scpi_get_uint8v(sdi->conn, NULL, &data) != SR_OK) { g_free(data); return TRUE; } packet.type = SR_DF_FRAME_BEGIN; sr_session_send(sdi, &packet); logic.length = data->len; logic.unitsize = 1; logic.data = data->data; packet.type = SR_DF_LOGIC; packet.payload = &logic; sr_session_send(cb_data, &packet); g_array_free(data, TRUE); data = NULL; break; default: sr_err("Invalid channel type."); break; } packet.type = SR_DF_FRAME_END; sr_session_send(sdi, &packet); if (devc->current_channel->next) { devc->current_channel = devc->current_channel->next; hmo_request_data(sdi); } else if (++devc->num_frames == devc->frame_limit) { sdi->driver->dev_acquisition_stop(sdi, cb_data); } else { devc->current_channel = devc->enabled_channels; hmo_request_data(sdi); } return TRUE; }