/* * This file is part of the sigrok project. * * Copyright (C) 2010 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include "libsigrok.h" #include "libsigrok-internal.h" /* Message logging helpers with driver-specific prefix string. */ #define DRIVER_LOG_DOMAIN "strutil: " #define sr_log(l, s, args...) sr_log(l, DRIVER_LOG_DOMAIN s, ## args) #define sr_spew(s, args...) sr_spew(DRIVER_LOG_DOMAIN s, ## args) #define sr_dbg(s, args...) sr_dbg(DRIVER_LOG_DOMAIN s, ## args) #define sr_info(s, args...) sr_info(DRIVER_LOG_DOMAIN s, ## args) #define sr_warn(s, args...) sr_warn(DRIVER_LOG_DOMAIN s, ## args) #define sr_err(s, args...) sr_err(DRIVER_LOG_DOMAIN s, ## args) /** * @file * * Helper functions for handling or converting libsigrok-related strings. */ /** * @defgroup grp_strutil String utilities * * Helper functions for handling or converting libsigrok-related strings. * * @{ */ /** * Convert a numeric value value to its "natural" string representation. * in SI units * * E.g. a value of 3000000, with units set to "W", would be converted * to "3 MW", 20000 to "20 kW", 31500 would become "31.5 kW". * * @param x The value to convert. * @param unit The unit to append to the string, or NULL if the string * has no units. * * @return A g_try_malloc()ed string representation of the samplerate value, * or NULL upon errors. The caller is responsible to g_free() the * memory. */ SR_API char *sr_si_string_u64(uint64_t x, const char *unit) { if (unit == NULL) unit = ""; if ((x >= SR_GHZ(1)) && (x % SR_GHZ(1) == 0)) { return g_strdup_printf("%" PRIu64 " G%s", x / SR_GHZ(1), unit); } else if ((x >= SR_GHZ(1)) && (x % SR_GHZ(1) != 0)) { return g_strdup_printf("%" PRIu64 ".%" PRIu64 " G%s", x / SR_GHZ(1), x % SR_GHZ(1), unit); } else if ((x >= SR_MHZ(1)) && (x % SR_MHZ(1) == 0)) { return g_strdup_printf("%" PRIu64 " M%s", x / SR_MHZ(1), unit); } else if ((x >= SR_MHZ(1)) && (x % SR_MHZ(1) != 0)) { return g_strdup_printf("%" PRIu64 ".%" PRIu64 " M%s", x / SR_MHZ(1), x % SR_MHZ(1), unit); } else if ((x >= SR_KHZ(1)) && (x % SR_KHZ(1) == 0)) { return g_strdup_printf("%" PRIu64 " k%s", x / SR_KHZ(1), unit); } else if ((x >= SR_KHZ(1)) && (x % SR_KHZ(1) != 0)) { return g_strdup_printf("%" PRIu64 ".%" PRIu64 " k%s", x / SR_KHZ(1), x % SR_KHZ(1), unit); } else { return g_strdup_printf("%" PRIu64 " %s", x, unit); } sr_err("%s: Error creating SI units string.", __func__); return NULL; } /** * Convert a numeric samplerate value to its "natural" string representation. * * E.g. a value of 3000000 would be converted to "3 MHz", 20000 to "20 kHz", * 31500 would become "31.5 kHz". * * @param samplerate The samplerate in Hz. * * @return A g_try_malloc()ed string representation of the samplerate value, * or NULL upon errors. The caller is responsible to g_free() the * memory. */ SR_API char *sr_samplerate_string(uint64_t samplerate) { return sr_si_string_u64(samplerate, "Hz"); } /** * Convert a numeric frequency value to the "natural" string representation * of its period. * * E.g. a value of 3000000 would be converted to "3 us", 20000 to "50 ms". * * @param frequency The frequency in Hz. * * @return A g_try_malloc()ed string representation of the frequency value, * or NULL upon errors. The caller is responsible to g_free() the * memory. */ SR_API char *sr_period_string(uint64_t frequency) { char *o; int r; /* Allocate enough for a uint64_t as string + " ms". */ if (!(o = g_try_malloc0(30 + 1))) { sr_err("%s: o malloc failed", __func__); return NULL; } if (frequency >= SR_GHZ(1)) r = snprintf(o, 30, "%" PRIu64 " ns", frequency / 1000000000); else if (frequency >= SR_MHZ(1)) r = snprintf(o, 30, "%" PRIu64 " us", frequency / 1000000); else if (frequency >= SR_KHZ(1)) r = snprintf(o, 30, "%" PRIu64 " ms", frequency / 1000); else r = snprintf(o, 30, "%" PRIu64 " s", frequency); if (r < 0) { /* Something went wrong... */ g_free(o); return NULL; } return o; } /** * Convert a numeric frequency value to the "natural" string representation * of its voltage value. * * E.g. a value of 300000 would be converted to "300mV", 2 to "2V". * * @param voltage The voltage represented as a rational number, with the * denominator a divisor of 1V. * * @return A g_try_malloc()ed string representation of the voltage value, * or NULL upon errors. The caller is responsible to g_free() the * memory. */ SR_API char *sr_voltage_string(struct sr_rational *voltage) { int r; char *o; if (!(o = g_try_malloc0(30 + 1))) { sr_err("%s: o malloc failed", __func__); return NULL; } if (voltage->q == 1000) r = snprintf(o, 30, "%" PRIu64 "mV", voltage->p); else if (voltage->q == 1) r = snprintf(o, 30, "%" PRIu64 "V", voltage->p); else r = snprintf(o, 30, "%gV", (float)voltage->p / (float)voltage->q); if (r < 0) { /* Something went wrong... */ g_free(o); return NULL; } return o; } /** * Parse a trigger specification string. * * @param sdi The device instance for which the trigger specification is * intended. Must not be NULL. Also, sdi->driver and * sdi->driver->info_get must not be NULL. * @param triggerstring The string containing the trigger specification for * one or more probes of this device. Entries for multiple probes are * comma-separated. Triggers are specified in the form key=value, * where the key is a probe number (or probe name) and the value is * the requested trigger type. Valid trigger types currently * include 'r' (rising edge), 'f' (falling edge), 'c' (any pin value * change), '0' (low value), or '1' (high value). * Example: "1=r,sck=f,miso=0,7=c" * * @return Pointer to a list of trigger types (strings), or NULL upon errors. * The pointer list (if non-NULL) has as many entries as the * respective device has probes (all physically available probes, * not just enabled ones). Entries of the list which don't have * a trigger value set in 'triggerstring' are NULL, the other entries * contain the respective trigger type which is requested for the * respective probe (e.g. "r", "c", and so on). */ SR_API char **sr_parse_triggerstring(const struct sr_dev_inst *sdi, const char *triggerstring) { GSList *l; struct sr_probe *probe; int max_probes, probenum, i; char **tokens, **triggerlist, *trigger, *tc; const char *trigger_types; gboolean error; max_probes = g_slist_length(sdi->probes); error = FALSE; if (!(triggerlist = g_try_malloc0(max_probes * sizeof(char *)))) { sr_err("%s: triggerlist malloc failed", __func__); return NULL; } if (sdi->driver->config_list(SR_CONF_TRIGGER_TYPE, (const void **)&trigger_types, sdi) != SR_OK) { sr_err("%s: Device doesn't support any triggers.", __func__); return NULL; } tokens = g_strsplit(triggerstring, ",", max_probes); for (i = 0; tokens[i]; i++) { probenum = -1; for (l = sdi->probes; l; l = l->next) { probe = (struct sr_probe *)l->data; if (probe->enabled && !strncmp(probe->name, tokens[i], strlen(probe->name))) { probenum = probe->index; break; } } if (probenum < 0 || probenum >= max_probes) { sr_err("Invalid probe."); error = TRUE; break; } if ((trigger = strchr(tokens[i], '='))) { for (tc = ++trigger; *tc; tc++) { if (strchr(trigger_types, *tc) == NULL) { sr_err("Unsupported trigger " "type '%c'.", *tc); error = TRUE; break; } } if (!error) triggerlist[probenum] = g_strdup(trigger); } } g_strfreev(tokens); if (error) { for (i = 0; i < max_probes; i++) g_free(triggerlist[i]); g_free(triggerlist); triggerlist = NULL; } return triggerlist; } /** * Convert a "natural" string representation of a size value to uint64_t. * * E.g. a value of "3k" or "3 K" would be converted to 3000, a value * of "15M" would be converted to 15000000. * * Value representations other than decimal (such as hex or octal) are not * supported. Only 'k' (kilo), 'm' (mega), 'g' (giga) suffixes are supported. * Spaces (but not other whitespace) between value and suffix are allowed. * * @param sizestring A string containing a (decimal) size value. * @param size Pointer to uint64_t which will contain the string's size value. * * @return SR_OK upon success, SR_ERR upon errors. */ SR_API int sr_parse_sizestring(const char *sizestring, uint64_t *size) { int multiplier, done; char *s; *size = strtoull(sizestring, &s, 10); multiplier = 0; done = FALSE; while (s && *s && multiplier == 0 && !done) { switch (*s) { case ' ': break; case 'k': case 'K': multiplier = SR_KHZ(1); break; case 'm': case 'M': multiplier = SR_MHZ(1); break; case 'g': case 'G': multiplier = SR_GHZ(1); break; default: done = TRUE; s--; } s++; } if (multiplier > 0) *size *= multiplier; if (*s && strcasecmp(s, "Hz")) return SR_ERR; return SR_OK; } /** * Convert a "natural" string representation of a time value to an * uint64_t value in milliseconds. * * E.g. a value of "3s" or "3 s" would be converted to 3000, a value * of "15ms" would be converted to 15. * * Value representations other than decimal (such as hex or octal) are not * supported. Only lower-case "s" and "ms" time suffixes are supported. * Spaces (but not other whitespace) between value and suffix are allowed. * * @param timestring A string containing a (decimal) time value. * @return The string's time value as uint64_t, in milliseconds. * * @todo Add support for "m" (minutes) and others. * @todo Add support for picoseconds? * @todo Allow both lower-case and upper-case? If no, document it. */ SR_API uint64_t sr_parse_timestring(const char *timestring) { uint64_t time_msec; char *s; /* TODO: Error handling, logging. */ time_msec = strtoull(timestring, &s, 10); if (time_msec == 0 && s == timestring) return 0; if (s && *s) { while (*s == ' ') s++; if (!strcmp(s, "s")) time_msec *= 1000; else if (!strcmp(s, "ms")) ; /* redundant */ else return 0; } return time_msec; } SR_API gboolean sr_parse_boolstring(const char *boolstr) { if (!boolstr) return FALSE; if (!g_ascii_strncasecmp(boolstr, "true", 4) || !g_ascii_strncasecmp(boolstr, "yes", 3) || !g_ascii_strncasecmp(boolstr, "on", 2) || !g_ascii_strncasecmp(boolstr, "1", 1)) return TRUE; return FALSE; } SR_API int sr_parse_period(const char *periodstr, struct sr_rational *r) { char *s; r->p = strtoull(periodstr, &s, 10); if (r->p == 0 && s == periodstr) /* No digits found. */ return SR_ERR_ARG; if (s && *s) { while (*s == ' ') s++; if (!strcmp(s, "fs")) r->q = 1000000000000000ULL; else if (!strcmp(s, "ps")) r->q = 1000000000000ULL; else if (!strcmp(s, "ns")) r->q = 1000000000ULL; else if (!strcmp(s, "us")) r->q = 1000000; else if (!strcmp(s, "ms")) r->q = 1000; else if (!strcmp(s, "s")) r->q = 1; else /* Must have a time suffix. */ return SR_ERR_ARG; } return SR_OK; } SR_API int sr_parse_voltage(const char *voltstr, struct sr_rational *r) { char *s; r->p = strtoull(voltstr, &s, 10); if (r->p == 0 && s == voltstr) /* No digits found. */ return SR_ERR_ARG; if (s && *s) { while (*s == ' ') s++; if (!strcasecmp(s, "mv")) r->q = 1000L; else if (!strcasecmp(s, "v")) r->q = 1; else /* Must have a base suffix. */ return SR_ERR_ARG; } return SR_OK; } /** @} */