/* * This file is part of the sigrok project. * * Copyright (C) 2011-2012 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include "sigrok.h" #include "sigrok-internal.h" #define USB_VENDOR_ID 0x0403 #define USB_PRODUCT_ID 0x6001 #define USB_DESCRIPTION "ChronoVu LA8" #define USB_VENDOR_NAME "ChronoVu" #define USB_MODEL_NAME "LA8" #define USB_MODEL_VERSION "" #define NUM_PROBES 8 #define TRIGGER_TYPES "01" #define SDRAM_SIZE (8 * 1024 * 1024) #define MIN_NUM_SAMPLES 1 #define BS 4096 /* Block size */ #define NUM_BLOCKS 2048 /* Number of blocks */ static GSList *dev_insts = NULL; /* Probes are numbered 0-7. */ static const char *probe_names[NUM_PROBES + 1] = { "0", "1", "2", "3", "4", "5", "6", "7", NULL, }; /* Private, per-device-instance driver context. */ struct context { /** FTDI device context (used by libftdi). */ struct ftdi_context *ftdic; /** The currently configured samplerate of the device. */ uint64_t cur_samplerate; /** The current sampling limit (in ms). */ uint64_t limit_msec; /** The current sampling limit (in number of samples). */ uint64_t limit_samples; /** TODO */ void *session_dev_id; /** * A buffer containing some (mangled) samples from the device. * Format: Pretty mangled-up (due to hardware reasons), see code. */ uint8_t mangled_buf[BS]; /** * An 8MB buffer where we'll store the de-mangled samples. * Format: Each sample is 1 byte, MSB is channel 7, LSB is channel 0. */ uint8_t *final_buf; /** * Trigger pattern (MSB = channel 7, LSB = channel 0). * A 1 bit matches a high signal, 0 matches a low signal on a probe. * Only low/high triggers (but not e.g. rising/falling) are supported. */ uint8_t trigger_pattern; /** * Trigger mask (MSB = channel 7, LSB = channel 0). * A 1 bit means "must match trigger_pattern", 0 means "don't care". */ uint8_t trigger_mask; /** Time (in seconds) before the trigger times out. */ uint64_t trigger_timeout; /** Tells us whether an SR_DF_TRIGGER packet was already sent. */ int trigger_found; /** TODO */ time_t done; /** Counter/index for the data block to be read. */ int block_counter; /** The divcount value (determines the sample period) for the LA8. */ uint8_t divcount; }; /* This will be initialized via hw_dev_info_get()/SR_DI_SAMPLERATES. */ static uint64_t supported_samplerates[255 + 1] = { 0 }; /* * Min: 1 sample per 0.01us -> sample time is 0.084s, samplerate 100MHz * Max: 1 sample per 2.55us -> sample time is 21.391s, samplerate 392.15kHz */ static const struct sr_samplerates samplerates = { .low = 0, .high = 0, .step = 0, .list = supported_samplerates, }; /* Note: Continuous sampling is not supported by the hardware. */ static const int hwcaps[] = { SR_HWCAP_LOGIC_ANALYZER, SR_HWCAP_SAMPLERATE, SR_HWCAP_LIMIT_MSEC, /* TODO: Not yet implemented. */ SR_HWCAP_LIMIT_SAMPLES, /* TODO: Not yet implemented. */ 0, }; /* Function prototypes. */ static int la8_close_usb_reset_sequencer(struct context *ctx); static int hw_dev_acquisition_stop(int dev_index, void *cb_data); static int la8_reset(struct context *ctx); static void fill_supported_samplerates_if_needed(void) { int i; /* Do nothing if supported_samplerates[] is already filled. */ if (supported_samplerates[0] != 0) return; /* Fill supported_samplerates[] with the proper values. */ for (i = 0; i < 255; i++) supported_samplerates[254 - i] = SR_MHZ(100) / (i + 1); supported_samplerates[255] = 0; } /** * Check if the given samplerate is supported by the LA8 hardware. * * @param samplerate The samplerate (in Hz) to check. * @return 1 if the samplerate is supported/valid, 0 otherwise. */ static int is_valid_samplerate(uint64_t samplerate) { int i; fill_supported_samplerates_if_needed(); for (i = 0; i < 255; i++) { if (supported_samplerates[i] == samplerate) return 1; } sr_err("la8: %s: invalid samplerate (%" PRIu64 "Hz)", __func__, samplerate); return 0; } /** * Convert a samplerate (in Hz) to the 'divcount' value the LA8 wants. * * LA8 hardware: sample period = (divcount + 1) * 10ns. * Min. value for divcount: 0x00 (10ns sample period, 100MHz samplerate). * Max. value for divcount: 0xfe (2550ns sample period, 392.15kHz samplerate). * * @param samplerate The samplerate in Hz. * @return The divcount value as needed by the hardware, or 0xff upon errors. */ static uint8_t samplerate_to_divcount(uint64_t samplerate) { if (samplerate == 0) { sr_err("la8: %s: samplerate was 0", __func__); return 0xff; } if (!is_valid_samplerate(samplerate)) { sr_err("la8: %s: can't get divcount, samplerate invalid", __func__); return 0xff; } return (SR_MHZ(100) / samplerate) - 1; } /** * Write data of a certain length to the LA8's FTDI device. * * @param ctx The struct containing private per-device-instance data. Must not * be NULL. ctx->ftdic must not be NULL either. * @param buf The buffer containing the data to write. Must not be NULL. * @param size The number of bytes to write. Must be >= 0. * @return The number of bytes written, or a negative value upon errors. */ static int la8_write(struct context *ctx, uint8_t *buf, int size) { int bytes_written; /* Note: Caller checked that ctx and ctx->ftdic != NULL. */ if (!buf) { sr_err("la8: %s: buf was NULL", __func__); return SR_ERR_ARG; } if (size < 0) { sr_err("la8: %s: size was < 0", __func__); return SR_ERR_ARG; } bytes_written = ftdi_write_data(ctx->ftdic, buf, size); if (bytes_written < 0) { sr_err("la8: %s: ftdi_write_data: (%d) %s", __func__, bytes_written, ftdi_get_error_string(ctx->ftdic)); (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ } else if (bytes_written != size) { sr_err("la8: %s: bytes to write: %d, bytes written: %d", __func__, size, bytes_written); (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ } return bytes_written; } /** * Read a certain amount of bytes from the LA8's FTDI device. * * @param ctx The struct containing private per-device-instance data. Must not * be NULL. ctx->ftdic must not be NULL either. * @param buf The buffer where the received data will be stored. Must not * be NULL. * @param size The number of bytes to read. Must be >= 1. * @return The number of bytes read, or a negative value upon errors. */ static int la8_read(struct context *ctx, uint8_t *buf, int size) { int bytes_read; /* Note: Caller checked that ctx and ctx->ftdic != NULL. */ if (!buf) { sr_err("la8: %s: buf was NULL", __func__); return SR_ERR_ARG; } if (size <= 0) { sr_err("la8: %s: size was <= 0", __func__); return SR_ERR_ARG; } bytes_read = ftdi_read_data(ctx->ftdic, buf, size); if (bytes_read < 0) { sr_err("la8: %s: ftdi_read_data: (%d) %s", __func__, bytes_read, ftdi_get_error_string(ctx->ftdic)); } else if (bytes_read != size) { // sr_err("la8: %s: bytes to read: %d, bytes read: %d", // __func__, size, bytes_read); } return bytes_read; } static int la8_close(struct context *ctx) { int ret; if (!ctx) { sr_err("la8: %s: ctx was NULL", __func__); return SR_ERR_ARG; } if (!ctx->ftdic) { sr_err("la8: %s: ctx->ftdic was NULL", __func__); return SR_ERR_ARG; } if ((ret = ftdi_usb_close(ctx->ftdic)) < 0) { sr_err("la8: %s: ftdi_usb_close: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); } return ret; } /** * Close the ChronoVu LA8 USB port and reset the LA8 sequencer logic. * * @param ctx The struct containing private per-device-instance data. * @return SR_OK upon success, SR_ERR_ARG upon invalid arguments. */ static int la8_close_usb_reset_sequencer(struct context *ctx) { /* Magic sequence of bytes for resetting the LA8 sequencer logic. */ uint8_t buf[8] = {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01}; int ret; if (!ctx) { sr_err("la8: %s: ctx was NULL", __func__); return SR_ERR_ARG; } if (!ctx->ftdic) { sr_err("la8: %s: ctx->ftdic was NULL", __func__); return SR_ERR_ARG; } if (ctx->ftdic->usb_dev) { /* Reset the LA8 sequencer logic, then wait 100ms. */ sr_dbg("la8: Resetting sequencer logic."); (void) la8_write(ctx, buf, 8); /* Ignore errors. */ g_usleep(100 * 1000); /* Purge FTDI buffers, then reset and close the FTDI device. */ sr_dbg("la8: Purging buffers, resetting+closing FTDI device."); /* Log errors, but ignore them (i.e., don't abort). */ if ((ret = ftdi_usb_purge_buffers(ctx->ftdic)) < 0) sr_err("la8: %s: ftdi_usb_purge_buffers: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); if ((ret = ftdi_usb_reset(ctx->ftdic)) < 0) sr_err("la8: %s: ftdi_usb_reset: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); if ((ret = ftdi_usb_close(ctx->ftdic)) < 0) sr_err("la8: %s: ftdi_usb_close: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); } /* Close USB device, deinitialize and free the FTDI context. */ ftdi_free(ctx->ftdic); /* Returns void. */ ctx->ftdic = NULL; return SR_OK; } /** * Reset the ChronoVu LA8. * * The LA8 must be reset after a failed read/write operation or upon timeouts. * * @param ctx The struct containing private per-device-instance data. * @return SR_OK upon success, SR_ERR upon failure. */ static int la8_reset(struct context *ctx) { uint8_t buf[BS]; time_t done, now; int bytes_read; if (!ctx) { sr_err("la8: %s: ctx was NULL", __func__); return SR_ERR_ARG; } if (!ctx->ftdic) { sr_err("la8: %s: ctx->ftdic was NULL", __func__); return SR_ERR_ARG; } sr_dbg("la8: Resetting the device."); /* * Purge pending read data from the FTDI hardware FIFO until * no more data is left, or a timeout occurs (after 20s). */ done = 20 + time(NULL); do { /* TODO: Ignore errors? Check for < 0 at least! */ bytes_read = la8_read(ctx, (uint8_t *)&buf, BS); now = time(NULL); } while ((done > now) && (bytes_read > 0)); /* Reset the LA8 sequencer logic and close the USB port. */ (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ sr_dbg("la8: Device reset finished."); return SR_OK; } static int configure_probes(struct context *ctx, const GSList *probes) { const struct sr_probe *probe; const GSList *l; uint8_t probe_bit; char *tc; /* Note: Caller checked that ctx != NULL. */ ctx->trigger_pattern = 0; ctx->trigger_mask = 0; /* Default to "don't care" for all probes. */ for (l = probes; l; l = l->next) { probe = (struct sr_probe *)l->data; if (!probe) { sr_err("la8: %s: probe was NULL", __func__); return SR_ERR; } /* Skip disabled probes. */ if (!probe->enabled) continue; /* Skip (enabled) probes with no configured trigger. */ if (!probe->trigger) continue; /* Note: Must only be run if probe->trigger != NULL. */ if (probe->index < 0 || probe->index > 7) { sr_err("la8: %s: invalid probe index %d, must be " "between 0 and 7", __func__, probe->index); return SR_ERR; } probe_bit = (1 << (probe->index - 1)); /* Configure the probe's trigger mask and trigger pattern. */ for (tc = probe->trigger; tc && *tc; tc++) { ctx->trigger_mask |= probe_bit; /* Sanity check, LA8 only supports low/high trigger. */ if (*tc != '0' && *tc != '1') { sr_err("la8: %s: invalid trigger '%c', only " "'0'/'1' supported", __func__, *tc); return SR_ERR; } if (*tc == '1') ctx->trigger_pattern |= probe_bit; } } sr_dbg("la8: trigger_mask = 0x%x, trigger_pattern = 0x%x", ctx->trigger_mask, ctx->trigger_pattern); return SR_OK; } static int hw_init(const char *devinfo) { int ret; struct sr_dev_inst *sdi; struct context *ctx; /* Avoid compiler errors. */ (void)devinfo; /* Allocate memory for our private driver context. */ if (!(ctx = g_try_malloc(sizeof(struct context)))) { sr_err("la8: %s: struct context malloc failed", __func__); goto err_free_nothing; } /* Set some sane defaults. */ ctx->ftdic = NULL; ctx->cur_samplerate = SR_MHZ(100); /* 100MHz == max. samplerate */ ctx->limit_msec = 0; ctx->limit_samples = 0; ctx->session_dev_id = NULL; memset(ctx->mangled_buf, 0, BS); ctx->final_buf = NULL; ctx->trigger_pattern = 0x00; /* Value irrelevant, see trigger_mask. */ ctx->trigger_mask = 0x00; /* All probes are "don't care". */ ctx->trigger_timeout = 10; /* Default to 10s trigger timeout. */ ctx->trigger_found = 0; ctx->done = 0; ctx->block_counter = 0; ctx->divcount = 0; /* 10ns sample period == 100MHz samplerate */ /* Allocate memory where we'll store the de-mangled data. */ if (!(ctx->final_buf = g_try_malloc(SDRAM_SIZE))) { sr_err("la8: %s: final_buf malloc failed", __func__); goto err_free_ctx; } /* Allocate memory for the FTDI context (ftdic) and initialize it. */ if (!(ctx->ftdic = ftdi_new())) { sr_err("la8: %s: ftdi_new failed", __func__); goto err_free_final_buf; } /* Check for the device and temporarily open it. */ if ((ret = ftdi_usb_open_desc(ctx->ftdic, USB_VENDOR_ID, USB_PRODUCT_ID, USB_DESCRIPTION, NULL)) < 0) { (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ goto err_free_ftdic; } sr_dbg("la8: Found LA8 device (%04x:%04x).", USB_VENDOR_ID, USB_PRODUCT_ID); /* Register the device with libsigrok. */ sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION); if (!sdi) { sr_err("la8: %s: sr_dev_inst_new failed", __func__); goto err_close_ftdic; } sdi->priv = ctx; dev_insts = g_slist_append(dev_insts, sdi); sr_spew("la8: Device init successful."); /* Close device. We'll reopen it again when we need it. */ (void) la8_close(ctx); /* Log, but ignore errors. */ return 1; err_close_ftdic: (void) la8_close(ctx); /* Log, but ignore errors. */ err_free_ftdic: free(ctx->ftdic); /* NOT g_free()! */ err_free_final_buf: g_free(ctx->final_buf); err_free_ctx: g_free(ctx); err_free_nothing: return 0; } static int hw_dev_open(int dev_index) { int ret; struct sr_dev_inst *sdi; struct context *ctx; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } sr_dbg("la8: Opening LA8 device (%04x:%04x).", USB_VENDOR_ID, USB_PRODUCT_ID); /* Open the device. */ if ((ret = ftdi_usb_open_desc(ctx->ftdic, USB_VENDOR_ID, USB_PRODUCT_ID, USB_DESCRIPTION, NULL)) < 0) { sr_err("la8: %s: ftdi_usb_open_desc: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ return SR_ERR; } sr_dbg("la8: Device opened successfully."); /* Purge RX/TX buffers in the FTDI chip. */ if ((ret = ftdi_usb_purge_buffers(ctx->ftdic)) < 0) { sr_err("la8: %s: ftdi_usb_purge_buffers: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ goto err_dev_open_close_ftdic; } sr_dbg("la8: FTDI buffers purged successfully."); /* Enable flow control in the FTDI chip. */ if ((ret = ftdi_setflowctrl(ctx->ftdic, SIO_RTS_CTS_HS)) < 0) { sr_err("la8: %s: ftdi_setflowcontrol: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ goto err_dev_open_close_ftdic; } sr_dbg("la8: FTDI flow control enabled successfully."); /* Wait 100ms. */ g_usleep(100 * 1000); sdi->status = SR_ST_ACTIVE; return SR_OK; err_dev_open_close_ftdic: (void) la8_close(ctx); /* Log, but ignore errors. */ return SR_ERR; } static int set_samplerate(struct sr_dev_inst *sdi, uint64_t samplerate) { struct context *ctx; /* Note: Caller checked that sdi and sdi->priv != NULL. */ ctx = sdi->priv; sr_spew("la8: Trying to set samplerate to %" PRIu64 "Hz.", samplerate); fill_supported_samplerates_if_needed(); /* Check if this is a samplerate supported by the hardware. */ if (!is_valid_samplerate(samplerate)) return SR_ERR; /* Set the new samplerate. */ ctx->cur_samplerate = samplerate; sr_dbg("la8: Samplerate set to %" PRIu64 "Hz.", ctx->cur_samplerate); return SR_OK; } static int hw_dev_close(int dev_index) { struct sr_dev_inst *sdi; struct context *ctx; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } sr_dbg("la8: Closing device."); if (sdi->status == SR_ST_ACTIVE) { sr_dbg("la8: Status ACTIVE, closing device."); /* TODO: Really ignore errors here, or return SR_ERR? */ (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ } else { sr_spew("la8: Status not ACTIVE, nothing to do."); } sdi->status = SR_ST_INACTIVE; sr_dbg("la8: Freeing sample buffer."); g_free(ctx->final_buf); return SR_OK; } static int hw_cleanup(void) { GSList *l; struct sr_dev_inst *sdi; int ret = SR_OK; /* Properly close all devices. */ for (l = dev_insts; l; l = l->next) { if (!(sdi = l->data)) { /* Log error, but continue cleaning up the rest. */ sr_err("la8: %s: sdi was NULL, continuing", __func__); ret = SR_ERR_BUG; continue; } sr_dev_inst_free(sdi); /* Returns void. */ } g_slist_free(dev_insts); /* Returns void. */ dev_insts = NULL; return ret; } static const void *hw_dev_info_get(int dev_index, int dev_info_id) { struct sr_dev_inst *sdi; struct context *ctx; const void *info; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL", __func__); return NULL; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return NULL; } sr_spew("la8: %s: dev_index %d, dev_info_id %d.", __func__, dev_index, dev_info_id); switch (dev_info_id) { case SR_DI_INST: info = sdi; sr_spew("la8: %s: Returning sdi.", __func__); break; case SR_DI_NUM_PROBES: info = GINT_TO_POINTER(NUM_PROBES); sr_spew("la8: %s: Returning number of probes: %d.", __func__, NUM_PROBES); break; case SR_DI_PROBE_NAMES: info = probe_names; sr_spew("la8: %s: Returning probenames.", __func__); break; case SR_DI_SAMPLERATES: fill_supported_samplerates_if_needed(); info = &samplerates; sr_spew("la8: %s: Returning samplerates.", __func__); break; case SR_DI_TRIGGER_TYPES: info = (char *)TRIGGER_TYPES; sr_spew("la8: %s: Returning trigger types: %s.", __func__, TRIGGER_TYPES); break; case SR_DI_CUR_SAMPLERATE: info = &ctx->cur_samplerate; sr_spew("la8: %s: Returning samplerate: %" PRIu64 "Hz.", __func__, ctx->cur_samplerate); break; default: /* Unknown device info ID, return NULL. */ sr_err("la8: %s: Unknown device info ID", __func__); info = NULL; break; } return info; } static int hw_dev_status_get(int dev_index) { struct sr_dev_inst *sdi; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL, device not found", __func__); return SR_ST_NOT_FOUND; } sr_dbg("la8: Returning status: %d.", sdi->status); return sdi->status; } static const int *hw_hwcap_get_all(void) { sr_spew("la8: Returning list of device capabilities."); return hwcaps; } static int hw_dev_config_set(int dev_index, int hwcap, const void *value) { struct sr_dev_inst *sdi; struct context *ctx; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } sr_spew("la8: %s: dev_index %d, hwcap %d", __func__, dev_index, hwcap); switch (hwcap) { case SR_HWCAP_SAMPLERATE: if (set_samplerate(sdi, *(const uint64_t *)value) == SR_ERR) { sr_err("la8: %s: setting samplerate failed.", __func__); return SR_ERR; } sr_dbg("la8: SAMPLERATE = %" PRIu64, ctx->cur_samplerate); break; case SR_HWCAP_PROBECONFIG: if (configure_probes(ctx, (const GSList *)value) != SR_OK) { sr_err("la8: %s: probe config failed.", __func__); return SR_ERR; } break; case SR_HWCAP_LIMIT_MSEC: if (*(const uint64_t *)value == 0) { sr_err("la8: %s: LIMIT_MSEC can't be 0.", __func__); return SR_ERR; } ctx->limit_msec = *(const uint64_t *)value; sr_dbg("la8: LIMIT_MSEC = %" PRIu64, ctx->limit_msec); break; case SR_HWCAP_LIMIT_SAMPLES: if (*(const uint64_t *)value < MIN_NUM_SAMPLES) { sr_err("la8: %s: LIMIT_SAMPLES too small.", __func__); return SR_ERR; } ctx->limit_samples = *(const uint64_t *)value; sr_dbg("la8: LIMIT_SAMPLES = %" PRIu64, ctx->limit_samples); break; default: /* Unknown capability, return SR_ERR. */ sr_err("la8: %s: Unknown capability.", __func__); return SR_ERR; break; } return SR_OK; } /** * Get a block of data from the LA8. * * @param ctx The struct containing private per-device-instance data. Must not * be NULL. ctx->ftdic must not be NULL either. * @return SR_OK upon success, or SR_ERR upon errors. */ static int la8_read_block(struct context *ctx) { int i, byte_offset, m, mi, p, index, bytes_read; time_t now; /* Note: Caller checked that ctx and ctx->ftdic != NULL. */ sr_spew("la8: Reading block %d.", ctx->block_counter); bytes_read = la8_read(ctx, ctx->mangled_buf, BS); /* If first block read got 0 bytes, retry until success or timeout. */ if ((bytes_read == 0) && (ctx->block_counter == 0)) { do { sr_spew("la8: Reading block 0 (again)."); bytes_read = la8_read(ctx, ctx->mangled_buf, BS); /* TODO: How to handle read errors here? */ now = time(NULL); } while ((ctx->done > now) && (bytes_read == 0)); } /* Check if block read was successful or a timeout occured. */ if (bytes_read != BS) { sr_err("la8: Trigger timed out. Bytes read: %d.", bytes_read); (void) la8_reset(ctx); /* Ignore errors. */ return SR_ERR; } /* De-mangle the data. */ sr_spew("la8: Demangling block %d.", ctx->block_counter); byte_offset = ctx->block_counter * BS; m = byte_offset / (1024 * 1024); mi = m * (1024 * 1024); for (i = 0; i < BS; i++) { p = i & (1 << 0); index = m * 2 + (((byte_offset + i) - mi) / 2) * 16; index += (ctx->divcount == 0) ? p : (1 - p); ctx->final_buf[index] = ctx->mangled_buf[i]; } return SR_OK; } static void send_block_to_session_bus(struct context *ctx, int block) { int i; uint8_t sample, expected_sample; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; int trigger_point; /* Relative trigger point (in this block). */ /* Note: No sanity checks on ctx/block, caller is responsible. */ /* Check if we can find the trigger condition in this block. */ trigger_point = -1; expected_sample = ctx->trigger_pattern & ctx->trigger_mask; for (i = 0; i < BS; i++) { /* Don't continue if the trigger was found previously. */ if (ctx->trigger_found) break; /* * Also, don't continue if triggers are "don't care", i.e. if * no trigger conditions were specified by the user. In that * case we don't want to send an SR_DF_TRIGGER packet at all. */ if (ctx->trigger_mask == 0x00) break; sample = *(ctx->final_buf + (block * BS) + i); if ((sample & ctx->trigger_mask) == expected_sample) { trigger_point = i; ctx->trigger_found = 1; break; } } /* If no trigger was found, send one SR_DF_LOGIC packet. */ if (trigger_point == -1) { /* Send an SR_DF_LOGIC packet to the session bus. */ sr_spew("la8: sending SR_DF_LOGIC packet (%d bytes) for " "block %d", BS, block); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = BS; logic.unitsize = 1; logic.data = ctx->final_buf + (block * BS); sr_session_send(ctx->session_dev_id, &packet); return; } /* * We found the trigger, so some special handling is needed. We have * to send an SR_DF_LOGIC packet with the samples before the trigger * (if any), then the SD_DF_TRIGGER packet itself, then another * SR_DF_LOGIC packet with the samples after the trigger (if any). */ /* TODO: Send SR_DF_TRIGGER packet before or after the actual sample? */ /* If at least one sample is located before the trigger... */ if (trigger_point > 0) { /* Send pre-trigger SR_DF_LOGIC packet to the session bus. */ sr_spew("la8: sending pre-trigger SR_DF_LOGIC packet, " "start = %d, length = %d", block * BS, trigger_point); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = trigger_point; logic.unitsize = 1; logic.data = ctx->final_buf + (block * BS); sr_session_send(ctx->session_dev_id, &packet); } /* Send the SR_DF_TRIGGER packet to the session bus. */ sr_spew("la8: sending SR_DF_TRIGGER packet, sample = %d", (block * BS) + trigger_point); packet.type = SR_DF_TRIGGER; packet.payload = NULL; sr_session_send(ctx->session_dev_id, &packet); /* If at least one sample is located after the trigger... */ if (trigger_point < (BS - 1)) { /* Send post-trigger SR_DF_LOGIC packet to the session bus. */ sr_spew("la8: sending post-trigger SR_DF_LOGIC packet, " "start = %d, length = %d", (block * BS) + trigger_point, BS - trigger_point); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = BS - trigger_point; logic.unitsize = 1; logic.data = ctx->final_buf + (block * BS) + trigger_point; sr_session_send(ctx->session_dev_id, &packet); } } static int receive_data(int fd, int revents, void *cb_data) { int i, ret; struct sr_dev_inst *sdi; struct context *ctx; /* Avoid compiler errors. */ (void)fd; (void)revents; if (!(sdi = cb_data)) { sr_err("la8: %s: cb_data was NULL", __func__); return FALSE; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return FALSE; } if (!ctx->ftdic) { sr_err("la8: %s: ctx->ftdic was NULL", __func__); return FALSE; } /* Get one block of data. */ if ((ret = la8_read_block(ctx)) < 0) { sr_err("la8: %s: la8_read_block error: %d", __func__, ret); hw_dev_acquisition_stop(sdi->index, sdi); return FALSE; } /* We need to get exactly NUM_BLOCKS blocks (i.e. 8MB) of data. */ if (ctx->block_counter != (NUM_BLOCKS - 1)) { ctx->block_counter++; return TRUE; } sr_dbg("la8: Sampling finished, sending data to session bus now."); /* All data was received and demangled, send it to the session bus. */ for (i = 0; i < NUM_BLOCKS; i++) send_block_to_session_bus(ctx, i); hw_dev_acquisition_stop(sdi->index, sdi); // return FALSE; /* FIXME? */ return TRUE; } static int hw_dev_acquisition_start(int dev_index, void *cb_data) { struct sr_dev_inst *sdi; struct context *ctx; struct sr_datafeed_packet packet; struct sr_datafeed_header header; struct sr_datafeed_meta_logic meta; uint8_t buf[4]; int bytes_written; if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } if (!ctx->ftdic) { sr_err("la8: %s: ctx->ftdic was NULL", __func__); return SR_ERR_BUG; } ctx->divcount = samplerate_to_divcount(ctx->cur_samplerate); if (ctx->divcount == 0xff) { sr_err("la8: %s: invalid divcount/samplerate", __func__); return SR_ERR; } sr_dbg("la8: Starting acquisition."); /* Fill acquisition parameters into buf[]. */ buf[0] = ctx->divcount; buf[1] = 0xff; /* This byte must always be 0xff. */ buf[2] = ctx->trigger_pattern; buf[3] = ctx->trigger_mask; /* Start acquisition. */ bytes_written = la8_write(ctx, buf, 4); if (bytes_written < 0) { sr_err("la8: Acquisition failed to start."); return SR_ERR; } else if (bytes_written != 4) { sr_err("la8: Acquisition failed to start."); return SR_ERR; /* TODO: Other error and return code? */ } sr_dbg("la8: Acquisition started successfully."); ctx->session_dev_id = cb_data; /* Send header packet to the session bus. */ sr_dbg("la8: Sending SR_DF_HEADER."); packet.type = SR_DF_HEADER; packet.payload = &header; header.feed_version = 1; gettimeofday(&header.starttime, NULL); sr_session_send(ctx->session_dev_id, &packet); /* Send metadata about the SR_DF_LOGIC packets to come. */ packet.type = SR_DF_META_LOGIC; packet.payload = &meta; meta.samplerate = ctx->cur_samplerate; meta.num_probes = NUM_PROBES; sr_session_send(ctx->session_dev_id, &packet); /* Time when we should be done (for detecting trigger timeouts). */ ctx->done = (ctx->divcount + 1) * 0.08388608 + time(NULL) + ctx->trigger_timeout; ctx->block_counter = 0; ctx->trigger_found = 0; /* Hook up a dummy handler to receive data from the LA8. */ sr_source_add(-1, G_IO_IN, 0, receive_data, sdi); return SR_OK; } static int hw_dev_acquisition_stop(int dev_index, void *cb_data) { struct sr_dev_inst *sdi; struct context *ctx; struct sr_datafeed_packet packet; sr_dbg("la8: Stopping acquisition."); if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) { sr_err("la8: %s: sdi was NULL", __func__); return SR_ERR_BUG; } if (!(ctx = sdi->priv)) { sr_err("la8: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } /* Send end packet to the session bus. */ sr_dbg("la8: Sending SR_DF_END."); packet.type = SR_DF_END; sr_session_send(cb_data, &packet); return SR_OK; } SR_PRIV struct sr_dev_driver chronovu_la8_driver_info = { .name = "chronovu-la8", .longname = "ChronoVu LA8", .api_version = 1, .init = hw_init, .cleanup = hw_cleanup, .dev_open = hw_dev_open, .dev_close = hw_dev_close, .dev_info_get = hw_dev_info_get, .dev_status_get = hw_dev_status_get, .hwcap_get_all = hw_hwcap_get_all, .dev_config_set = hw_dev_config_set, .dev_acquisition_start = hw_dev_acquisition_start, .dev_acquisition_stop = hw_dev_acquisition_stop, };