/* * This file is part of the libsigrok project. * * Copyright (C) 2010-2012 Håvard Espeland , * Copyright (C) 2010 Martin Stensgård * Copyright (C) 2010 Carl Henrik Lunde * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* * ASIX SIGMA/SIGMA2 logic analyzer driver */ #include #include "protocol.h" #define USB_VENDOR 0xa600 #define USB_PRODUCT 0xa000 #define USB_DESCRIPTION "ASIX SIGMA" #define USB_VENDOR_NAME "ASIX" #define USB_MODEL_NAME "SIGMA" /* * The ASIX Sigma supports arbitrary integer frequency divider in * the 50MHz mode. The divider is in range 1...256 , allowing for * very precise sampling rate selection. This driver supports only * a subset of the sampling rates. */ SR_PRIV const uint64_t samplerates[] = { SR_KHZ(200), /* div=250 */ SR_KHZ(250), /* div=200 */ SR_KHZ(500), /* div=100 */ SR_MHZ(1), /* div=50 */ SR_MHZ(5), /* div=10 */ SR_MHZ(10), /* div=5 */ SR_MHZ(25), /* div=2 */ SR_MHZ(50), /* div=1 */ SR_MHZ(100), /* Special FW needed */ SR_MHZ(200), /* Special FW needed */ }; SR_PRIV const int SAMPLERATES_COUNT = ARRAY_SIZE(samplerates); static const char sigma_firmware_files[][24] = { /* 50 MHz, supports 8 bit fractions */ "asix-sigma-50.fw", /* 100 MHz */ "asix-sigma-100.fw", /* 200 MHz */ "asix-sigma-200.fw", /* Synchronous clock from pin */ "asix-sigma-50sync.fw", /* Frequency counter */ "asix-sigma-phasor.fw", }; static int sigma_read(void *buf, size_t size, struct dev_context *devc) { int ret; ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size); if (ret < 0) { sr_err("ftdi_read_data failed: %s", ftdi_get_error_string(&devc->ftdic)); } return ret; } static int sigma_write(void *buf, size_t size, struct dev_context *devc) { int ret; ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size); if (ret < 0) { sr_err("ftdi_write_data failed: %s", ftdi_get_error_string(&devc->ftdic)); } else if ((size_t) ret != size) { sr_err("ftdi_write_data did not complete write."); } return ret; } /* * NOTE: We chose the buffer size to be large enough to hold any write to the * device. We still print a message just in case. */ SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len, struct dev_context *devc) { size_t i; uint8_t buf[80]; int idx = 0; if ((len + 2) > sizeof(buf)) { sr_err("Attempted to write %zu bytes, but buffer is too small.", len + 2); return SR_ERR_BUG; } buf[idx++] = REG_ADDR_LOW | (reg & 0xf); buf[idx++] = REG_ADDR_HIGH | (reg >> 4); for (i = 0; i < len; i++) { buf[idx++] = REG_DATA_LOW | (data[i] & 0xf); buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4); } return sigma_write(buf, idx, devc); } SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc) { return sigma_write_register(reg, &value, 1, devc); } static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len, struct dev_context *devc) { uint8_t buf[3]; buf[0] = REG_ADDR_LOW | (reg & 0xf); buf[1] = REG_ADDR_HIGH | (reg >> 4); buf[2] = REG_READ_ADDR; sigma_write(buf, sizeof(buf), devc); return sigma_read(data, len, devc); } static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc) { uint8_t value; if (1 != sigma_read_register(reg, &value, 1, devc)) { sr_err("sigma_get_register: 1 byte expected"); return 0; } return value; } static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos, struct dev_context *devc) { uint8_t buf[] = { REG_ADDR_LOW | READ_TRIGGER_POS_LOW, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, }; uint8_t result[6]; sigma_write(buf, sizeof(buf), devc); sigma_read(result, sizeof(result), devc); *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16); *stoppos = result[3] | (result[4] << 8) | (result[5] << 16); /* Not really sure why this must be done, but according to spec. */ if ((--*stoppos & 0x1ff) == 0x1ff) *stoppos -= 64; if ((*--triggerpos & 0x1ff) == 0x1ff) *triggerpos -= 64; return 1; } static int sigma_read_dram(uint16_t startchunk, size_t numchunks, uint8_t *data, struct dev_context *devc) { size_t i; uint8_t buf[4096]; int idx = 0; /* Send the startchunk. Index start with 1. */ buf[0] = startchunk >> 8; buf[1] = startchunk & 0xff; sigma_write_register(WRITE_MEMROW, buf, 2, devc); /* Read the DRAM. */ buf[idx++] = REG_DRAM_BLOCK; buf[idx++] = REG_DRAM_WAIT_ACK; for (i = 0; i < numchunks; i++) { /* Alternate bit to copy from DRAM to cache. */ if (i != (numchunks - 1)) buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4); buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4); if (i != (numchunks - 1)) buf[idx++] = REG_DRAM_WAIT_ACK; } sigma_write(buf, idx, devc); return sigma_read(data, numchunks * CHUNK_SIZE, devc); } /* Upload trigger look-up tables to Sigma. */ SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc) { int i; uint8_t tmp[2]; uint16_t bit; /* Transpose the table and send to Sigma. */ for (i = 0; i < 16; i++) { bit = 1 << i; tmp[0] = tmp[1] = 0; if (lut->m2d[0] & bit) tmp[0] |= 0x01; if (lut->m2d[1] & bit) tmp[0] |= 0x02; if (lut->m2d[2] & bit) tmp[0] |= 0x04; if (lut->m2d[3] & bit) tmp[0] |= 0x08; if (lut->m3 & bit) tmp[0] |= 0x10; if (lut->m3s & bit) tmp[0] |= 0x20; if (lut->m4 & bit) tmp[0] |= 0x40; if (lut->m0d[0] & bit) tmp[1] |= 0x01; if (lut->m0d[1] & bit) tmp[1] |= 0x02; if (lut->m0d[2] & bit) tmp[1] |= 0x04; if (lut->m0d[3] & bit) tmp[1] |= 0x08; if (lut->m1d[0] & bit) tmp[1] |= 0x10; if (lut->m1d[1] & bit) tmp[1] |= 0x20; if (lut->m1d[2] & bit) tmp[1] |= 0x40; if (lut->m1d[3] & bit) tmp[1] |= 0x80; sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp), devc); sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc); } /* Send the parameters */ sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params, sizeof(lut->params), devc); return SR_OK; } SR_PRIV void sigma_clear_helper(void *priv) { struct dev_context *devc; devc = priv; ftdi_deinit(&devc->ftdic); } /* * Configure the FPGA for bitbang mode. * This sequence is documented in section 2. of the ASIX Sigma programming * manual. This sequence is necessary to configure the FPGA in the Sigma * into Bitbang mode, in which it can be programmed with the firmware. */ static int sigma_fpga_init_bitbang(struct dev_context *devc) { uint8_t suicide[] = { 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84, }; uint8_t init_array[] = { 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, }; int i, ret, timeout = (10 * 1000); uint8_t data; /* Section 2. part 1), do the FPGA suicide. */ sigma_write(suicide, sizeof(suicide), devc); sigma_write(suicide, sizeof(suicide), devc); sigma_write(suicide, sizeof(suicide), devc); sigma_write(suicide, sizeof(suicide), devc); /* Section 2. part 2), do pulse on D1. */ sigma_write(init_array, sizeof(init_array), devc); ftdi_usb_purge_buffers(&devc->ftdic); /* Wait until the FPGA asserts D6/INIT_B. */ for (i = 0; i < timeout; i++) { ret = sigma_read(&data, 1, devc); if (ret < 0) return ret; /* Test if pin D6 got asserted. */ if (data & (1 << 5)) return 0; /* The D6 was not asserted yet, wait a bit. */ g_usleep(10 * 1000); } return SR_ERR_TIMEOUT; } /* * Configure the FPGA for logic-analyzer mode. */ static int sigma_fpga_init_la(struct dev_context *devc) { /* Initialize the logic analyzer mode. */ uint8_t logic_mode_start[] = { REG_ADDR_LOW | (READ_ID & 0xf), REG_ADDR_HIGH | (READ_ID >> 8), REG_READ_ADDR, /* Read ID register. */ REG_ADDR_LOW | (WRITE_TEST & 0xf), REG_DATA_LOW | 0x5, REG_DATA_HIGH_WRITE | 0x5, REG_READ_ADDR, /* Read scratch register. */ REG_DATA_LOW | 0xa, REG_DATA_HIGH_WRITE | 0xa, REG_READ_ADDR, /* Read scratch register. */ REG_ADDR_LOW | (WRITE_MODE & 0xf), REG_DATA_LOW | 0x0, REG_DATA_HIGH_WRITE | 0x8, }; uint8_t result[3]; int ret; /* Initialize the logic analyzer mode. */ sigma_write(logic_mode_start, sizeof(logic_mode_start), devc); /* Expect a 3 byte reply since we issued three READ requests. */ ret = sigma_read(result, 3, devc); if (ret != 3) goto err; if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) goto err; return SR_OK; err: sr_err("Configuration failed. Invalid reply received."); return SR_ERR; } /* * Read the firmware from a file and transform it into a series of bitbang * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d * by the caller of this function. */ static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name, uint8_t **bb_cmd, gsize *bb_cmd_size) { size_t i, file_size, bb_size; char *firmware; uint8_t *bb_stream, *bbs; uint32_t imm; int bit, v; int ret = SR_OK; /* Retrieve the on-disk firmware file content. */ firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name, &file_size, 256 * 1024); if (!firmware) return SR_ERR; /* Unscramble the file content (XOR with "random" sequence). */ imm = 0x3f6df2ab; for (i = 0; i < file_size; i++) { imm = (imm + 0xa853753) % 177 + (imm * 0x8034052); firmware[i] ^= imm & 0xff; } /* * Generate a sequence of bitbang samples. With two samples per * FPGA configuration bit, providing the level for the DIN signal * as well as two edges for CCLK. See Xilinx UG332 for details * ("slave serial" mode). * * Note that CCLK is inverted in hardware. That's why the * respective bit is first set and then cleared in the bitbang * sample sets. So that the DIN level will be stable when the * data gets sampled at the rising CCLK edge, and the signals' * setup time constraint will be met. * * The caller will put the FPGA into download mode, will send * the bitbang samples, and release the allocated memory. */ bb_size = file_size * 8 * 2; bb_stream = (uint8_t *)g_try_malloc(bb_size); if (!bb_stream) { sr_err("%s: Failed to allocate bitbang stream", __func__); ret = SR_ERR_MALLOC; goto exit; } bbs = bb_stream; for (i = 0; i < file_size; i++) { for (bit = 7; bit >= 0; bit--) { v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00; *bbs++ = v | 0x01; *bbs++ = v; } } /* The transformation completed successfully, return the result. */ *bb_cmd = bb_stream; *bb_cmd_size = bb_size; exit: g_free(firmware); return ret; } static int upload_firmware(struct sr_context *ctx, int firmware_idx, struct dev_context *devc) { int ret; unsigned char *buf; unsigned char pins; size_t buf_size; const char *firmware = sigma_firmware_files[firmware_idx]; struct ftdi_context *ftdic = &devc->ftdic; /* Make sure it's an ASIX SIGMA. */ ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL); if (ret < 0) { sr_err("ftdi_usb_open failed: %s", ftdi_get_error_string(ftdic)); return 0; } ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG); if (ret < 0) { sr_err("ftdi_set_bitmode failed: %s", ftdi_get_error_string(ftdic)); return 0; } /* Four times the speed of sigmalogan - Works well. */ ret = ftdi_set_baudrate(ftdic, 750 * 1000); if (ret < 0) { sr_err("ftdi_set_baudrate failed: %s", ftdi_get_error_string(ftdic)); return 0; } /* Initialize the FPGA for firmware upload. */ ret = sigma_fpga_init_bitbang(devc); if (ret) return ret; /* Prepare firmware. */ ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size); if (ret != SR_OK) { sr_err("An error occurred while reading the firmware: %s", firmware); return ret; } /* Upload firmware. */ sr_info("Uploading firmware file '%s'.", firmware); sigma_write(buf, buf_size, devc); g_free(buf); ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET); if (ret < 0) { sr_err("ftdi_set_bitmode failed: %s", ftdi_get_error_string(ftdic)); return SR_ERR; } ftdi_usb_purge_buffers(ftdic); /* Discard garbage. */ while (sigma_read(&pins, 1, devc) == 1) ; /* Initialize the FPGA for logic-analyzer mode. */ ret = sigma_fpga_init_la(devc); if (ret != SR_OK) return ret; devc->cur_firmware = firmware_idx; sr_info("Firmware uploaded."); return SR_OK; } SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate) { struct dev_context *devc; struct drv_context *drvc; unsigned int i; int ret; devc = sdi->priv; drvc = sdi->driver->context; ret = SR_OK; for (i = 0; i < ARRAY_SIZE(samplerates); i++) { if (samplerates[i] == samplerate) break; } if (samplerates[i] == 0) return SR_ERR_SAMPLERATE; if (samplerate <= SR_MHZ(50)) { ret = upload_firmware(drvc->sr_ctx, 0, devc); devc->num_channels = 16; } else if (samplerate == SR_MHZ(100)) { ret = upload_firmware(drvc->sr_ctx, 1, devc); devc->num_channels = 8; } else if (samplerate == SR_MHZ(200)) { ret = upload_firmware(drvc->sr_ctx, 2, devc); devc->num_channels = 4; } if (ret == SR_OK) { devc->cur_samplerate = samplerate; devc->period_ps = 1000000000000ULL / samplerate; devc->samples_per_event = 16 / devc->num_channels; devc->state.state = SIGMA_IDLE; } return ret; } /* * In 100 and 200 MHz mode, only a single pin rising/falling can be * set as trigger. In other modes, two rising/falling triggers can be set, * in addition to value/mask trigger for any number of channels. * * The Sigma supports complex triggers using boolean expressions, but this * has not been implemented yet. */ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_trigger *trigger; struct sr_trigger_stage *stage; struct sr_trigger_match *match; const GSList *l, *m; int channelbit, trigger_set; devc = sdi->priv; memset(&devc->trigger, 0, sizeof(struct sigma_trigger)); if (!(trigger = sr_session_trigger_get(sdi->session))) return SR_OK; trigger_set = 0; for (l = trigger->stages; l; l = l->next) { stage = l->data; for (m = stage->matches; m; m = m->next) { match = m->data; if (!match->channel->enabled) /* Ignore disabled channels with a trigger. */ continue; channelbit = 1 << (match->channel->index); if (devc->cur_samplerate >= SR_MHZ(100)) { /* Fast trigger support. */ if (trigger_set) { sr_err("Only a single pin trigger is " "supported in 100 and 200MHz mode."); return SR_ERR; } if (match->match == SR_TRIGGER_FALLING) devc->trigger.fallingmask |= channelbit; else if (match->match == SR_TRIGGER_RISING) devc->trigger.risingmask |= channelbit; else { sr_err("Only rising/falling trigger is " "supported in 100 and 200MHz mode."); return SR_ERR; } trigger_set++; } else { /* Simple trigger support (event). */ if (match->match == SR_TRIGGER_ONE) { devc->trigger.simplevalue |= channelbit; devc->trigger.simplemask |= channelbit; } else if (match->match == SR_TRIGGER_ZERO) { devc->trigger.simplevalue &= ~channelbit; devc->trigger.simplemask |= channelbit; } else if (match->match == SR_TRIGGER_FALLING) { devc->trigger.fallingmask |= channelbit; trigger_set++; } else if (match->match == SR_TRIGGER_RISING) { devc->trigger.risingmask |= channelbit; trigger_set++; } /* * Actually, Sigma supports 2 rising/falling triggers, * but they are ORed and the current trigger syntax * does not permit ORed triggers. */ if (trigger_set > 1) { sr_err("Only 1 rising/falling trigger " "is supported."); return SR_ERR; } } } } return SR_OK; } /* Software trigger to determine exact trigger position. */ static int get_trigger_offset(uint8_t *samples, uint16_t last_sample, struct sigma_trigger *t) { int i; uint16_t sample = 0; for (i = 0; i < 8; i++) { if (i > 0) last_sample = sample; sample = samples[2 * i] | (samples[2 * i + 1] << 8); /* Simple triggers. */ if ((sample & t->simplemask) != t->simplevalue) continue; /* Rising edge. */ if (((last_sample & t->risingmask) != 0) || ((sample & t->risingmask) != t->risingmask)) continue; /* Falling edge. */ if ((last_sample & t->fallingmask) != t->fallingmask || (sample & t->fallingmask) != 0) continue; break; } /* If we did not match, return original trigger pos. */ return i & 0x7; } /* * Return the timestamp of "DRAM cluster". */ static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster) { return (cluster->timestamp_hi << 8) | cluster->timestamp_lo; } static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster, unsigned int events_in_cluster, unsigned int triggered, struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; struct sigma_state *ss = &devc->state; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; uint16_t tsdiff, ts; uint8_t samples[2048]; unsigned int i; ts = sigma_dram_cluster_ts(dram_cluster); tsdiff = ts - ss->lastts; ss->lastts = ts; packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.unitsize = 2; logic.data = samples; /* * First of all, send Sigrok a copy of the last sample from * previous cluster as many times as needed to make up for * the differential characteristics of data we get from the * Sigma. Sigrok needs one sample of data per period. * * One DRAM cluster contains a timestamp and seven samples, * the units of timestamp are "devc->period_ps" , the first * sample in the cluster happens at the time of the timestamp * and the remaining samples happen at timestamp +1...+6 . */ for (ts = 0; ts < tsdiff - (EVENTS_PER_CLUSTER - 1); ts++) { i = ts % 1024; samples[2 * i + 0] = ss->lastsample & 0xff; samples[2 * i + 1] = ss->lastsample >> 8; /* * If we have 1024 samples ready or we're at the * end of submitting the padding samples, submit * the packet to Sigrok. */ if ((i == 1023) || (ts == (tsdiff - EVENTS_PER_CLUSTER))) { logic.length = (i + 1) * logic.unitsize; sr_session_send(sdi, &packet); } } /* * Parse the samples in current cluster and prepare them * to be submitted to Sigrok. */ for (i = 0; i < events_in_cluster; i++) { samples[2 * i + 1] = dram_cluster->samples[i].sample_lo; samples[2 * i + 0] = dram_cluster->samples[i].sample_hi; } /* Send data up to trigger point (if triggered). */ int trigger_offset = 0; if (triggered) { /* * Trigger is not always accurate to sample because of * pipeline delay. However, it always triggers before * the actual event. We therefore look at the next * samples to pinpoint the exact position of the trigger. */ trigger_offset = get_trigger_offset(samples, ss->lastsample, &devc->trigger); if (trigger_offset > 0) { packet.type = SR_DF_LOGIC; logic.length = trigger_offset * logic.unitsize; sr_session_send(sdi, &packet); events_in_cluster -= trigger_offset; } /* Only send trigger if explicitly enabled. */ if (devc->use_triggers) { packet.type = SR_DF_TRIGGER; sr_session_send(sdi, &packet); } } if (events_in_cluster > 0) { packet.type = SR_DF_LOGIC; logic.length = events_in_cluster * logic.unitsize; logic.data = samples + (trigger_offset * logic.unitsize); sr_session_send(sdi, &packet); } ss->lastsample = samples[2 * (events_in_cluster - 1) + 0] | (samples[2 * (events_in_cluster - 1) + 1] << 8); } /* * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster. * Each event is 20ns apart, and can contain multiple samples. * * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart. * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart. * For 50 MHz and below, events contain one sample for each channel, * spread 20 ns apart. */ static int decode_chunk_ts(struct sigma_dram_line *dram_line, uint16_t events_in_line, uint32_t trigger_event, struct sr_dev_inst *sdi) { struct sigma_dram_cluster *dram_cluster; struct dev_context *devc = sdi->priv; unsigned int clusters_in_line = (events_in_line + (EVENTS_PER_CLUSTER - 1)) / EVENTS_PER_CLUSTER; unsigned int events_in_cluster; unsigned int i; uint32_t trigger_cluster = ~0, triggered = 0; /* Check if trigger is in this chunk. */ if (trigger_event < (64 * 7)) { if (devc->cur_samplerate <= SR_MHZ(50)) { trigger_event -= MIN(EVENTS_PER_CLUSTER - 1, trigger_event); } /* Find in which cluster the trigger occurred. */ trigger_cluster = trigger_event / EVENTS_PER_CLUSTER; } /* For each full DRAM cluster. */ for (i = 0; i < clusters_in_line; i++) { dram_cluster = &dram_line->cluster[i]; /* The last cluster might not be full. */ if ((i == clusters_in_line - 1) && (events_in_line % EVENTS_PER_CLUSTER)) { events_in_cluster = events_in_line % EVENTS_PER_CLUSTER; } else { events_in_cluster = EVENTS_PER_CLUSTER; } triggered = (i == trigger_cluster); sigma_decode_dram_cluster(dram_cluster, events_in_cluster, triggered, sdi); } return SR_OK; } static int download_capture(struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; const uint32_t chunks_per_read = 32; struct sigma_dram_line *dram_line; int bufsz; uint32_t stoppos, triggerpos; uint8_t modestatus; uint32_t i; uint32_t dl_lines_total, dl_lines_curr, dl_lines_done; uint32_t dl_events_in_line = 64 * 7; uint32_t trg_line = ~0, trg_event = ~0; dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line)); if (!dram_line) return FALSE; sr_info("Downloading sample data."); /* Stop acquisition. */ sigma_set_register(WRITE_MODE, 0x11, devc); /* Set SDRAM Read Enable. */ sigma_set_register(WRITE_MODE, 0x02, devc); /* Get the current position. */ sigma_read_pos(&stoppos, &triggerpos, devc); /* Check if trigger has fired. */ modestatus = sigma_get_register(READ_MODE, devc); if (modestatus & 0x20) { trg_line = triggerpos >> 9; trg_event = triggerpos & 0x1ff; } /* * Determine how many 1024b "DRAM lines" do we need to read from the * Sigma so we have a complete set of samples. Note that the last * line can be only partial, containing less than 64 clusters. */ dl_lines_total = (stoppos >> 9) + 1; dl_lines_done = 0; while (dl_lines_total > dl_lines_done) { /* We can download only up-to 32 DRAM lines in one go! */ dl_lines_curr = MIN(chunks_per_read, dl_lines_total); bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr, (uint8_t *)dram_line, devc); /* TODO: Check bufsz. For now, just avoid compiler warnings. */ (void)bufsz; /* This is the first DRAM line, so find the initial timestamp. */ if (dl_lines_done == 0) { devc->state.lastts = sigma_dram_cluster_ts(&dram_line[0].cluster[0]); devc->state.lastsample = 0; } for (i = 0; i < dl_lines_curr; i++) { uint32_t trigger_event = ~0; /* The last "DRAM line" can be only partially full. */ if (dl_lines_done + i == dl_lines_total - 1) dl_events_in_line = stoppos & 0x1ff; /* Test if the trigger happened on this line. */ if (dl_lines_done + i == trg_line) trigger_event = trg_event; decode_chunk_ts(dram_line + i, dl_events_in_line, trigger_event, sdi); } dl_lines_done += dl_lines_curr; } std_session_send_df_end(sdi); sdi->driver->dev_acquisition_stop(sdi); g_free(dram_line); return TRUE; } /* * Handle the Sigma when in CAPTURE mode. This function checks: * - Sampling time ended * - DRAM capacity overflow * This function triggers download of the samples from Sigma * in case either of the above conditions is true. */ static int sigma_capture_mode(struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; uint64_t running_msec; struct timeval tv; uint32_t stoppos, triggerpos; /* Check if the selected sampling duration passed. */ gettimeofday(&tv, 0); running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 + (tv.tv_usec - devc->start_tv.tv_usec) / 1000; if (running_msec >= devc->limit_msec) return download_capture(sdi); /* Get the position in DRAM to which the FPGA is writing now. */ sigma_read_pos(&stoppos, &triggerpos, devc); /* Test if DRAM is full and if so, download the data. */ if ((stoppos >> 9) == 32767) return download_capture(sdi); return TRUE; } SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data) { struct sr_dev_inst *sdi; struct dev_context *devc; (void)fd; (void)revents; sdi = cb_data; devc = sdi->priv; if (devc->state.state == SIGMA_IDLE) return TRUE; if (devc->state.state == SIGMA_CAPTURE) return sigma_capture_mode(sdi); return TRUE; } /* Build a LUT entry used by the trigger functions. */ static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry) { int i, j, k, bit; /* For each quad channel. */ for (i = 0; i < 4; i++) { entry[i] = 0xffff; /* For each bit in LUT. */ for (j = 0; j < 16; j++) /* For each channel in quad. */ for (k = 0; k < 4; k++) { bit = 1 << (i * 4 + k); /* Set bit in entry */ if ((mask & bit) && ((!(value & bit)) != (!(j & (1 << k))))) entry[i] &= ~(1 << j); } } } /* Add a logical function to LUT mask. */ static void add_trigger_function(enum triggerop oper, enum triggerfunc func, int index, int neg, uint16_t *mask) { int i, j; int x[2][2], tmp, a, b, aset, bset, rset; memset(x, 0, 4 * sizeof(int)); /* Trigger detect condition. */ switch (oper) { case OP_LEVEL: x[0][1] = 1; x[1][1] = 1; break; case OP_NOT: x[0][0] = 1; x[1][0] = 1; break; case OP_RISE: x[0][1] = 1; break; case OP_FALL: x[1][0] = 1; break; case OP_RISEFALL: x[0][1] = 1; x[1][0] = 1; break; case OP_NOTRISE: x[1][1] = 1; x[0][0] = 1; x[1][0] = 1; break; case OP_NOTFALL: x[1][1] = 1; x[0][0] = 1; x[0][1] = 1; break; case OP_NOTRISEFALL: x[1][1] = 1; x[0][0] = 1; break; } /* Transpose if neg is set. */ if (neg) { for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) { tmp = x[i][j]; x[i][j] = x[1 - i][1 - j]; x[1 - i][1 - j] = tmp; } } } /* Update mask with function. */ for (i = 0; i < 16; i++) { a = (i >> (2 * index + 0)) & 1; b = (i >> (2 * index + 1)) & 1; aset = (*mask >> i) & 1; bset = x[b][a]; rset = 0; if (func == FUNC_AND || func == FUNC_NAND) rset = aset & bset; else if (func == FUNC_OR || func == FUNC_NOR) rset = aset | bset; else if (func == FUNC_XOR || func == FUNC_NXOR) rset = aset ^ bset; if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR) rset = !rset; *mask &= ~(1 << i); if (rset) *mask |= 1 << i; } } /* * Build trigger LUTs used by 50 MHz and lower sample rates for supporting * simple pin change and state triggers. Only two transitions (rise/fall) can be * set at any time, but a full mask and value can be set (0/1). */ SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc) { int i,j; uint16_t masks[2] = { 0, 0 }; memset(lut, 0, sizeof(struct triggerlut)); /* Constant for simple triggers. */ lut->m4 = 0xa000; /* Value/mask trigger support. */ build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask, lut->m2d); /* Rise/fall trigger support. */ for (i = 0, j = 0; i < 16; i++) { if (devc->trigger.risingmask & (1 << i) || devc->trigger.fallingmask & (1 << i)) masks[j++] = 1 << i; } build_lut_entry(masks[0], masks[0], lut->m0d); build_lut_entry(masks[1], masks[1], lut->m1d); /* Add glue logic */ if (masks[0] || masks[1]) { /* Transition trigger. */ if (masks[0] & devc->trigger.risingmask) add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3); if (masks[0] & devc->trigger.fallingmask) add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3); if (masks[1] & devc->trigger.risingmask) add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3); if (masks[1] & devc->trigger.fallingmask) add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3); } else { /* Only value/mask trigger. */ lut->m3 = 0xffff; } /* Triggertype: event. */ lut->params.selres = 3; return SR_OK; }