/* * This file is part of the libsigrok project. * * Copyright (C) 2011-2014 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "protocol.h" SR_PRIV const struct cv_profile cv_profiles[] = { { CHRONOVU_LA8, "LA8", "ChronoVu LA8", 8, SR_MHZ(100), "01", 0.8388608 }, { CHRONOVU_LA16, "LA16", "ChronoVu LA16", 16, SR_MHZ(200), "01rf", 0.042 }, { 0, NULL, NULL, 0, 0, NULL, 0.0 }, }; /* LA8: channels are numbered 0-7. LA16: channels are numbered 0-15. */ SR_PRIV const char *cv_channel_names[] = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", }; static int close_usb_reset_sequencer(struct dev_context *devc); SR_PRIV void cv_fill_samplerates_if_needed(const struct sr_dev_inst *sdi) { int i; struct dev_context *devc; devc = sdi->priv; if (devc->samplerates[0] != 0) return; for (i = 0; i < 255; i++) devc->samplerates[254 - i] = devc->prof->max_samplerate / (i + 1); } /** * Check if the given samplerate is supported by the hardware. * * @param sdi Device instance. * @param samplerate The samplerate (in Hz) to check. * * @return 1 if the samplerate is supported/valid, 0 otherwise. */ static int is_valid_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate) { int i; struct dev_context *devc; devc = sdi->priv; cv_fill_samplerates_if_needed(sdi); for (i = 0; i < 255; i++) { if (devc->samplerates[i] == samplerate) return 1; } sr_err("Invalid samplerate (%" PRIu64 "Hz).", samplerate); return 0; } /** * Convert a samplerate (in Hz) to the 'divcount' value the device wants. * * The divcount value can be 0x00 - 0xfe (0xff is not valid). * * LA8: * sample period = (divcount + 1) * 10ns. * divcount = 0x00: 10ns period, 100MHz samplerate. * divcount = 0xfe: 2550ns period, 392.15kHz samplerate. * * LA16: * sample period = (divcount + 1) * 5ns. * divcount = 0x00: 5ns period, 200MHz samplerate. * divcount = 0xfe: 1275ns period, ~784.31kHz samplerate. * * @param sdi Device instance. * @param samplerate The samplerate in Hz. * * @return The divcount value as needed by the hardware, or 0xff upon errors. */ SR_PRIV uint8_t cv_samplerate_to_divcount(const struct sr_dev_inst *sdi, uint64_t samplerate) { struct dev_context *devc; devc = sdi->priv; if (samplerate == 0) { sr_err("Can't convert invalid samplerate of 0 Hz."); return 0xff; } if (!is_valid_samplerate(sdi, samplerate)) { sr_err("Can't get divcount, samplerate invalid."); return 0xff; } return (devc->prof->max_samplerate / samplerate) - 1; } /** * Write data of a certain length to the FTDI device. * * @param devc The struct containing private per-device-instance data. Must not * be NULL. devc->ftdic must not be NULL either. * @param buf The buffer containing the data to write. Must not be NULL. * @param size The number of bytes to write. Must be > 0. * * @return The number of bytes written, or a negative value upon errors. */ SR_PRIV int cv_write(struct dev_context *devc, uint8_t *buf, int size) { int bytes_written; /* Note: Caller ensures devc/devc->ftdic/buf != NULL and size > 0. */ bytes_written = ftdi_write_data(devc->ftdic, buf, size); if (bytes_written < 0) { sr_err("Failed to write data (%d): %s.", bytes_written, ftdi_get_error_string(devc->ftdic)); (void) close_usb_reset_sequencer(devc); /* Ignore errors. */ } else if (bytes_written != size) { sr_err("Failed to write data, only %d/%d bytes written.", size, bytes_written); (void) close_usb_reset_sequencer(devc); /* Ignore errors. */ } return bytes_written; } /** * Read a certain amount of bytes from the FTDI device. * * @param devc The struct containing private per-device-instance data. Must not * be NULL. devc->ftdic must not be NULL either. * @param buf The buffer where the received data will be stored. Must not * be NULL. * @param size The number of bytes to read. Must be >= 1. * * @return The number of bytes read, or a negative value upon errors. */ static int cv_read(struct dev_context *devc, uint8_t *buf, int size) { int bytes_read; /* Note: Caller ensures devc/devc->ftdic/buf != NULL and size > 0. */ bytes_read = ftdi_read_data(devc->ftdic, buf, size); if (bytes_read < 0) { sr_err("Failed to read data (%d): %s.", bytes_read, ftdi_get_error_string(devc->ftdic)); } else if (bytes_read != size) { // sr_err("Failed to read data, only %d/%d bytes read.", // bytes_read, size); } return bytes_read; } /** * Close the USB port and reset the sequencer logic. * * @param devc The struct containing private per-device-instance data. * * @return SR_OK upon success, SR_ERR_ARG upon invalid arguments. */ static int close_usb_reset_sequencer(struct dev_context *devc) { /* Magic sequence of bytes for resetting the sequencer logic. */ uint8_t buf[8] = {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01}; int ret; /* Note: Caller checked that devc and devc->ftdic != NULL. */ if (devc->ftdic->usb_dev) { /* Reset the sequencer logic, then wait 100ms. */ sr_dbg("Resetting sequencer logic."); (void) cv_write(devc, buf, 8); /* Ignore errors. */ g_usleep(100 * 1000); /* Purge FTDI buffers, then reset and close the FTDI device. */ sr_dbg("Purging buffers, resetting+closing FTDI device."); /* Log errors, but ignore them (i.e., don't abort). */ if ((ret = ftdi_usb_purge_buffers(devc->ftdic)) < 0) sr_err("Failed to purge FTDI buffers (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); if ((ret = ftdi_usb_reset(devc->ftdic)) < 0) sr_err("Failed to reset FTDI device (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); if ((ret = ftdi_usb_close(devc->ftdic)) < 0) sr_err("Failed to close FTDI device (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); } /* Close USB device, deinitialize and free the FTDI context. */ ftdi_free(devc->ftdic); devc->ftdic = NULL; return SR_OK; } /** * Reset the ChronoVu device. * * A reset is required after a failed read/write operation or upon timeouts. * * @param devc The struct containing private per-device-instance data. * * @return SR_OK upon success, SR_ERR upon failure. */ static int reset_device(struct dev_context *devc) { uint8_t buf[BS]; gint64 done, now; int bytes_read; /* Note: Caller checked that devc and devc->ftdic != NULL. */ sr_dbg("Resetting the device."); /* * Purge pending read data from the FTDI hardware FIFO until * no more data is left, or a timeout occurs (after 20s). */ done = (20 * G_TIME_SPAN_SECOND) + g_get_monotonic_time(); do { /* Try to read bytes until none are left (or errors occur). */ bytes_read = cv_read(devc, (uint8_t *)&buf, BS); now = g_get_monotonic_time(); } while ((done > now) && (bytes_read > 0)); /* Reset the sequencer logic and close the USB port. */ (void) close_usb_reset_sequencer(devc); /* Ignore errors. */ sr_dbg("Device reset finished."); return SR_OK; } SR_PRIV int cv_configure_channels(const struct sr_dev_inst *sdi) { struct dev_context *devc; const struct sr_channel *ch; const GSList *l; uint16_t channel_bit; char *tc; devc = sdi->priv; devc->trigger_pattern = 0x0000; /* Default to "low" trigger. */ devc->trigger_mask = 0x0000; /* Default to "don't care". */ devc->trigger_edgemask = 0x0000; /* Default to "state triggered". */ for (l = sdi->channels; l; l = l->next) { ch = (struct sr_channel *)l->data; if (!ch) { sr_err("%s: channel was NULL.", __func__); return SR_ERR; } /* Skip disabled channels. */ if (!ch->enabled) continue; /* Skip (enabled) channels with no configured trigger. */ if (!ch->trigger) continue; /* Note: Must only be run if ch->trigger != NULL. */ if (ch->index < 0 || ch->index > (int)devc->prof->num_channels - 1) { sr_err("Invalid channel index %d, must be " "between 0 and %d.", ch->index, devc->prof->num_channels - 1); return SR_ERR; } channel_bit = (1 << (ch->index)); /* Configure the channel's trigger pattern/mask/edgemask. */ for (tc = ch->trigger; tc && *tc; tc++) { devc->trigger_mask |= channel_bit; /* Sanity check, LA8 only supports low/high trigger. */ if ((devc->prof->model == CHRONOVU_LA8) && (*tc != '0' && *tc != '1')) { sr_err("Invalid trigger '%c', only " "'0'/'1' supported.", *tc); return SR_ERR; } /* state: 1 == high, edge: 1 == rising edge. */ if (*tc == '1' || *tc == 'r') devc->trigger_pattern |= channel_bit; /* LA16 (but not LA8) supports edge triggering. */ if ((devc->prof->model == CHRONOVU_LA16)) { if (*tc == 'r' || *tc == 'f') devc->trigger_edgemask |= channel_bit; } } } sr_dbg("Trigger pattern/mask/edgemask = 0x%04x / 0x%04x / 0x%04x.", devc->trigger_pattern, devc->trigger_mask, devc->trigger_edgemask); return SR_OK; } SR_PRIV int cv_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate) { struct dev_context *devc; /* Note: Caller checked that sdi and sdi->priv != NULL. */ devc = sdi->priv; sr_spew("Trying to set samplerate to %" PRIu64 "Hz.", samplerate); cv_fill_samplerates_if_needed(sdi); /* Check if this is a samplerate supported by the hardware. */ if (!is_valid_samplerate(sdi, samplerate)) { sr_dbg("Failed to set invalid samplerate (%" PRIu64 "Hz).", samplerate); return SR_ERR; } devc->cur_samplerate = samplerate; sr_dbg("Samplerate set to %" PRIu64 "Hz.", devc->cur_samplerate); return SR_OK; } /** * Get a block of data from the device. * * @param devc The struct containing private per-device-instance data. Must not * be NULL. devc->ftdic must not be NULL either. * * @return SR_OK upon success, or SR_ERR upon errors. */ SR_PRIV int cv_read_block(struct dev_context *devc) { int i, byte_offset, m, mi, p, q, index, bytes_read; gint64 now; /* Note: Caller checked that devc and devc->ftdic != NULL. */ sr_spew("Reading block %d.", devc->block_counter); bytes_read = cv_read(devc, devc->mangled_buf, BS); /* If first block read got 0 bytes, retry until success or timeout. */ if ((bytes_read == 0) && (devc->block_counter == 0)) { do { sr_spew("Reading block 0 (again)."); /* Note: If bytes_read < 0 cv_read() will log errors. */ bytes_read = cv_read(devc, devc->mangled_buf, BS); now = g_get_monotonic_time(); } while ((devc->done > now) && (bytes_read == 0)); } /* Check if block read was successful or a timeout occured. */ if (bytes_read != BS) { sr_err("Trigger timed out. Bytes read: %d.", bytes_read); (void) reset_device(devc); /* Ignore errors. */ return SR_ERR; } /* De-mangle the data. */ sr_spew("Demangling block %d.", devc->block_counter); byte_offset = devc->block_counter * BS; m = byte_offset / (1024 * 1024); mi = m * (1024 * 1024); for (i = 0; i < BS; i++) { if (devc->prof->model == CHRONOVU_LA8) { p = i & (1 << 0); index = m * 2 + (((byte_offset + i) - mi) / 2) * 16; index += (devc->divcount == 0) ? p : (1 - p); } else { p = i & (1 << 0); q = i & (1 << 1); index = m * 4 + (((byte_offset + i) - mi) / 4) * 32; index += q + (1 - p); } devc->final_buf[index] = devc->mangled_buf[i]; } return SR_OK; } SR_PRIV void cv_send_block_to_session_bus(struct dev_context *devc, int block) { int i, idx; uint8_t sample, expected_sample, tmp8; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; int trigger_point; /* Relative trigger point (in this block). */ /* Note: Caller ensures devc/devc->ftdic != NULL and block > 0. */ /* TODO: Implement/test proper trigger support for the LA16. */ /* Check if we can find the trigger condition in this block. */ trigger_point = -1; expected_sample = devc->trigger_pattern & devc->trigger_mask; for (i = 0; i < BS; i++) { /* Don't continue if the trigger was found previously. */ if (devc->trigger_found) break; /* * Also, don't continue if triggers are "don't care", i.e. if * no trigger conditions were specified by the user. In that * case we don't want to send an SR_DF_TRIGGER packet at all. */ if (devc->trigger_mask == 0x0000) break; sample = *(devc->final_buf + (block * BS) + i); if ((sample & devc->trigger_mask) == expected_sample) { trigger_point = i; devc->trigger_found = 1; break; } } /* Swap low and high bytes of the 16-bit LA16 samples. */ if (devc->prof->model == CHRONOVU_LA16) { for (i = 0; i < BS; i += 2) { idx = (block * BS) + i; tmp8 = devc->final_buf[idx]; devc->final_buf[idx] = devc->final_buf[idx + 1]; devc->final_buf[idx + 1] = tmp8; } } /* If no trigger was found, send one SR_DF_LOGIC packet. */ if (trigger_point == -1) { /* Send an SR_DF_LOGIC packet to the session bus. */ sr_spew("Sending SR_DF_LOGIC packet (%d bytes) for " "block %d.", BS, block); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = BS; logic.unitsize = devc->prof->num_channels / 8; logic.data = devc->final_buf + (block * BS); sr_session_send(devc->cb_data, &packet); return; } /* * We found the trigger, so some special handling is needed. We have * to send an SR_DF_LOGIC packet with the samples before the trigger * (if any), then the SD_DF_TRIGGER packet itself, then another * SR_DF_LOGIC packet with the samples after the trigger (if any). */ /* TODO: Send SR_DF_TRIGGER packet before or after the actual sample? */ /* If at least one sample is located before the trigger... */ if (trigger_point > 0) { /* Send pre-trigger SR_DF_LOGIC packet to the session bus. */ sr_spew("Sending pre-trigger SR_DF_LOGIC packet, " "start = %d, length = %d.", block * BS, trigger_point); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = trigger_point; logic.unitsize = devc->prof->num_channels / 8; logic.data = devc->final_buf + (block * BS); sr_session_send(devc->cb_data, &packet); } /* Send the SR_DF_TRIGGER packet to the session bus. */ sr_spew("Sending SR_DF_TRIGGER packet, sample = %d.", (block * BS) + trigger_point); packet.type = SR_DF_TRIGGER; packet.payload = NULL; sr_session_send(devc->cb_data, &packet); /* If at least one sample is located after the trigger... */ if (trigger_point < (BS - 1)) { /* Send post-trigger SR_DF_LOGIC packet to the session bus. */ sr_spew("Sending post-trigger SR_DF_LOGIC packet, " "start = %d, length = %d.", (block * BS) + trigger_point, BS - trigger_point); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = BS - trigger_point; logic.unitsize = devc->prof->num_channels / 8; logic.data = devc->final_buf + (block * BS) + trigger_point; sr_session_send(devc->cb_data, &packet); } }