/* * This file is part of the libsigrok project. * * Copyright (C) 2013 poljar (Damir Jelić) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "protocol.h" static const char *hameg_scpi_dialect[] = { [SCPI_CMD_GET_DIG_DATA] = ":POD%d:DATA?", [SCPI_CMD_GET_TIMEBASE] = ":TIM:SCAL?", [SCPI_CMD_SET_TIMEBASE] = ":TIM:SCAL %s", [SCPI_CMD_GET_COUPLING] = ":CHAN%d:COUP?", [SCPI_CMD_SET_COUPLING] = ":CHAN%d:COUP %s", [SCPI_CMD_GET_SAMPLE_RATE] = ":ACQ:SRAT?", [SCPI_CMD_GET_SAMPLE_RATE_LIVE] = ":%s:DATA:POINTS?", [SCPI_CMD_GET_ANALOG_DATA] = ":CHAN%d:DATA?", [SCPI_CMD_GET_VERTICAL_DIV] = ":CHAN%d:SCAL?", [SCPI_CMD_SET_VERTICAL_DIV] = ":CHAN%d:SCAL %s", [SCPI_CMD_GET_DIG_POD_STATE] = ":POD%d:STAT?", [SCPI_CMD_SET_DIG_POD_STATE] = ":POD%d:STAT %d", [SCPI_CMD_GET_TRIGGER_SLOPE] = ":TRIG:A:EDGE:SLOP?", [SCPI_CMD_SET_TRIGGER_SLOPE] = ":TRIG:A:EDGE:SLOP %s", [SCPI_CMD_GET_TRIGGER_SOURCE] = ":TRIG:A:SOUR?", [SCPI_CMD_SET_TRIGGER_SOURCE] = ":TRIG:A:SOUR %s", [SCPI_CMD_GET_DIG_CHAN_STATE] = ":LOG%d:STAT?", [SCPI_CMD_SET_DIG_CHAN_STATE] = ":LOG%d:STAT %d", [SCPI_CMD_GET_VERTICAL_OFFSET] = ":CHAN%d:POS?", [SCPI_CMD_GET_HORIZ_TRIGGERPOS] = ":TIM:POS?", [SCPI_CMD_SET_HORIZ_TRIGGERPOS] = ":TIM:POS %s", [SCPI_CMD_GET_ANALOG_CHAN_STATE] = ":CHAN%d:STAT?", [SCPI_CMD_SET_ANALOG_CHAN_STATE] = ":CHAN%d:STAT %d", }; static const int32_t hmo_hwcaps[] = { SR_CONF_OSCILLOSCOPE, SR_CONF_TRIGGER_SOURCE, SR_CONF_TIMEBASE, SR_CONF_NUM_TIMEBASE, SR_CONF_TRIGGER_SLOPE, SR_CONF_HORIZ_TRIGGERPOS, SR_CONF_SAMPLERATE, SR_CONF_LIMIT_FRAMES, }; static const int32_t hmo_analog_caps[] = { SR_CONF_NUM_VDIV, SR_CONF_COUPLING, SR_CONF_VDIV, }; static const char *hmo_coupling_options[] = { "AC", "ACL", "DC", "DCL", "GND", NULL, }; static const char *scope_trigger_slopes[] = { "POS", "NEG", NULL, }; static const char *hmo_compact2_trigger_sources[] = { "CH1", "CH2", "LINE", "EXT", "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7", NULL, }; static const char *hmo_compact4_trigger_sources[] = { "CH1", "CH2", "CH3", "CH4", "LINE", "EXT", "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7", NULL, }; static const uint64_t hmo_timebases[][2] = { /* nanoseconds */ { 2, 1000000000 }, { 5, 1000000000 }, { 10, 1000000000 }, { 20, 1000000000 }, { 50, 1000000000 }, { 100, 1000000000 }, { 200, 1000000000 }, { 500, 1000000000 }, /* microseconds */ { 1, 1000000 }, { 2, 1000000 }, { 5, 1000000 }, { 10, 1000000 }, { 20, 1000000 }, { 50, 1000000 }, { 100, 1000000 }, { 200, 1000000 }, { 500, 1000000 }, /* milliseconds */ { 1, 1000 }, { 2, 1000 }, { 5, 1000 }, { 10, 1000 }, { 20, 1000 }, { 50, 1000 }, { 100, 1000 }, { 200, 1000 }, { 500, 1000 }, /* seconds */ { 1, 1 }, { 2, 1 }, { 5, 1 }, { 10, 1 }, { 20, 1 }, { 50, 1 }, }; static const uint64_t hmo_vdivs[][2] = { /* millivolts */ { 1, 1000 }, { 2, 1000 }, { 5, 1000 }, { 10, 1000 }, { 20, 1000 }, { 50, 1000 }, { 100, 1000 }, { 200, 1000 }, { 500, 1000 }, /* volts */ { 1, 1 }, { 2, 1 }, { 5, 1 }, { 10, 1 }, }; static const char *scope_analog_probe_names[] = { "CH1", "CH2", "CH3", "CH4", }; static const char *scope_digital_probe_names[] = { "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7", "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15", }; static struct scope_config scope_models[] = { { .name = {"HMO722", "HMO1022", "HMO1522", "HMO2022", NULL}, .analog_channels = 2, .digital_channels = 8, .digital_pods = 1, .analog_names = &scope_analog_probe_names, .digital_names = &scope_digital_probe_names, .hw_caps = &hmo_hwcaps, .num_hwcaps = ARRAY_SIZE(hmo_hwcaps), .analog_hwcaps = &hmo_analog_caps, .num_analog_hwcaps = ARRAY_SIZE(hmo_analog_caps), .coupling_options = &hmo_coupling_options, .trigger_sources = &hmo_compact2_trigger_sources, .trigger_slopes = &scope_trigger_slopes, .timebases = &hmo_timebases, .num_timebases = ARRAY_SIZE(hmo_timebases), .vdivs = &hmo_vdivs, .num_vdivs = ARRAY_SIZE(hmo_vdivs), .num_xdivs = 12, .num_ydivs = 8, .scpi_dialect = &hameg_scpi_dialect, }, { .name = {"HMO724", "HMO1024", "HMO1524", "HMO2024", NULL}, .analog_channels = 4, .digital_channels = 8, .digital_pods = 1, .analog_names = &scope_analog_probe_names, .digital_names = &scope_digital_probe_names, .hw_caps = &hmo_hwcaps, .num_hwcaps = ARRAY_SIZE(hmo_hwcaps), .analog_hwcaps = &hmo_analog_caps, .num_analog_hwcaps = ARRAY_SIZE(hmo_analog_caps), .coupling_options = &hmo_coupling_options, .trigger_sources = &hmo_compact4_trigger_sources, .trigger_slopes = &scope_trigger_slopes, .timebases = &hmo_timebases, .num_timebases = ARRAY_SIZE(hmo_timebases), .vdivs = &hmo_vdivs, .num_vdivs = ARRAY_SIZE(hmo_vdivs), .num_xdivs = 12, .num_ydivs = 8, .scpi_dialect = &hameg_scpi_dialect, }, }; static void scope_state_dump(struct scope_config *config, struct scope_state *state) { unsigned int i; char *tmp; for (i = 0; i < config->analog_channels; ++i) { tmp = sr_voltage_string((*config->vdivs)[state->analog_channels[i].vdiv][0], (*config->vdivs)[state->analog_channels[i].vdiv][1]); sr_info("State of analog channel %d -> %s : %s (coupling) %s (vdiv) %2.2e (offset)", i + 1, state->analog_channels[i].state ? "On" : "Off", (*config->coupling_options)[state->analog_channels[i].coupling], tmp, state->analog_channels[i].vertical_offset); } for (i = 0; i < config->digital_channels; ++i) { sr_info("State of digital channel %d -> %s", i, state->digital_channels[i] ? "On" : "Off"); } for (i = 0; i < config->digital_pods; ++i) { sr_info("State of digital POD %d -> %s", i, state->digital_pods[i] ? "On" : "Off"); } tmp = sr_period_string((*config->timebases)[state->timebase][0] * (*config->timebases)[state->timebase][1]); sr_info("Current timebase: %s", tmp); g_free(tmp); tmp = sr_samplerate_string(state->sample_rate); sr_info("Current samplerate: %s", tmp); g_free(tmp); sr_info("Current trigger: %s (source), %s (slope) %.2f (offset)", (*config->trigger_sources)[state->trigger_source], (*config->trigger_slopes)[state->trigger_slope], state->horiz_triggerpos); } static int scope_state_get_array_option(struct sr_scpi_dev_inst *scpi, const char *command, const char *(*array)[], int *result) { char *tmp; unsigned int i; if (sr_scpi_get_string(scpi, command, &tmp) != SR_OK) { g_free(tmp); return SR_ERR; } for (i = 0; (*array)[i]; ++i) { if (!g_strcmp0(tmp, (*array)[i])) { *result = i; g_free(tmp); tmp = NULL; break; } } if (tmp) { g_free(tmp); return SR_ERR; } return SR_OK; } static int analog_channel_state_get(struct sr_scpi_dev_inst *scpi, struct scope_config *config, struct scope_state *state) { unsigned int i, j; float tmp_float; char command[MAX_COMMAND_SIZE]; for (i = 0; i < config->analog_channels; ++i) { g_snprintf(command, sizeof(command), (*config->scpi_dialect)[SCPI_CMD_GET_ANALOG_CHAN_STATE], i + 1); if (sr_scpi_get_bool(scpi, command, &state->analog_channels[i].state) != SR_OK) return SR_ERR; g_snprintf(command, sizeof(command), (*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_DIV], i + 1); if (sr_scpi_get_float(scpi, command, &tmp_float) != SR_OK) return SR_ERR; for (j = 0; j < config->num_vdivs; j++) { if (tmp_float == ((float) (*config->vdivs)[j][0] / (*config->vdivs)[j][1])) { state->analog_channels[i].vdiv = j; break; } } if (i == config->num_vdivs) return SR_ERR; g_snprintf(command, sizeof(command), (*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_OFFSET], i + 1); if (sr_scpi_get_float(scpi, command, &state->analog_channels[i].vertical_offset) != SR_OK) return SR_ERR; g_snprintf(command, sizeof(command), (*config->scpi_dialect)[SCPI_CMD_GET_COUPLING], i + 1); if (scope_state_get_array_option(scpi, command, config->coupling_options, &state->analog_channels[i].coupling) != SR_OK) return SR_ERR; } return SR_OK; } static int digital_channel_state_get(struct sr_scpi_dev_inst *scpi, struct scope_config *config, struct scope_state *state) { unsigned int i; char command[MAX_COMMAND_SIZE]; for (i = 0; i < config->digital_channels; ++i) { g_snprintf(command, sizeof(command), (*config->scpi_dialect)[SCPI_CMD_GET_DIG_CHAN_STATE], i); if (sr_scpi_get_bool(scpi, command, &state->digital_channels[i]) != SR_OK) return SR_ERR; } for (i = 0; i < config->digital_pods; ++i) { g_snprintf(command, sizeof(command), (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_STATE], i + 1); if (sr_scpi_get_bool(scpi, command, &state->digital_pods[i]) != SR_OK) return SR_ERR; } return SR_OK; } SR_PRIV int hmo_update_sample_rate(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct scope_state *state; struct scope_config *config; int tmp; unsigned int i; float tmp_float; gboolean channel_found; char tmp_str[MAX_COMMAND_SIZE]; char chan_name[20]; devc = sdi->priv; config = devc->model_config; state = devc->model_state; channel_found = FALSE; for (i = 0; i < config->analog_channels; ++i) { if (state->analog_channels[i].state) { g_snprintf(chan_name, sizeof(chan_name), "CHAN%d", i + 1); g_snprintf(tmp_str, sizeof(tmp_str), (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE_LIVE], chan_name); channel_found = TRUE; break; } } if (!channel_found) { for (i = 0; i < config->digital_pods; i++) { if (state->digital_pods[i]) { g_snprintf(chan_name, sizeof(chan_name), "POD%d", i); g_snprintf(tmp_str, sizeof(tmp_str), (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE_LIVE], chan_name); channel_found = TRUE; break; } } } /* No channel is active, ask the instrument for the sample rate * in single shot mode */ if (!channel_found) { if (sr_scpi_get_float(sdi->conn, (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE], &tmp_float) != SR_OK) return SR_ERR; state->sample_rate = tmp_float; } else { if (sr_scpi_get_int(sdi->conn, tmp_str, &tmp) != SR_OK) return SR_ERR; state->sample_rate = tmp / (((float) (*config->timebases)[state->timebase][0] / (*config->timebases)[state->timebase][1]) * config->num_xdivs); } return SR_OK; } SR_PRIV int hmo_scope_state_get(struct sr_dev_inst *sdi) { struct dev_context *devc; struct scope_state *state; struct scope_config *config; float tmp_float; unsigned int i; devc = sdi->priv; config = devc->model_config; state = devc->model_state; sr_info("Fetching scope state"); if (analog_channel_state_get(sdi->conn, config, state) != SR_OK) return SR_ERR; if (digital_channel_state_get(sdi->conn, config, state) != SR_OK) return SR_ERR; if (sr_scpi_get_float(sdi->conn, (*config->scpi_dialect)[SCPI_CMD_GET_TIMEBASE], &tmp_float) != SR_OK) return SR_ERR; for (i = 0; i < config->num_timebases; i++) { if (tmp_float == ((float) (*config->timebases)[i][0] / (*config->timebases)[i][1])) { state->timebase = i; break; } } if (i == config->num_timebases) return SR_ERR; if (sr_scpi_get_float(sdi->conn, (*config->scpi_dialect)[SCPI_CMD_GET_HORIZ_TRIGGERPOS], &tmp_float) != SR_OK) return SR_ERR; state->horiz_triggerpos = tmp_float / (((double) (*config->timebases)[state->timebase][0] / (*config->timebases)[state->timebase][1]) * config->num_xdivs); state->horiz_triggerpos -= 0.5; state->horiz_triggerpos *= -1; if (scope_state_get_array_option(sdi->conn, (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SOURCE], config->trigger_sources, &state->trigger_source) != SR_OK) return SR_ERR; if (scope_state_get_array_option(sdi->conn, (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SLOPE], config->trigger_slopes, &state->trigger_slope) != SR_OK) return SR_ERR; if (hmo_update_sample_rate(sdi) != SR_OK) return SR_ERR; sr_info("Fetching finished."); scope_state_dump(config, state); return SR_OK; } static struct scope_state *scope_state_new(struct scope_config *config) { struct scope_state *state; if (!(state = g_try_malloc0(sizeof(struct scope_state)))) return NULL; if (!(state->analog_channels = g_try_malloc0_n(config->analog_channels, sizeof(struct analog_channel_state)))) goto fail; if (!(state->digital_channels = g_try_malloc0_n( config->digital_channels, sizeof(gboolean)))) goto fail; if (!(state->digital_pods = g_try_malloc0_n(config->digital_pods, sizeof(gboolean)))) goto fail; return state; fail: if (state->analog_channels) g_free(state->analog_channels); if (state->digital_channels) g_free(state->digital_channels); if (state->digital_pods) g_free(state->digital_pods); g_free(state); return NULL; } SR_PRIV void hmo_scope_state_free(struct scope_state *state) { g_free(state->analog_channels); g_free(state->digital_channels); g_free(state->digital_pods); g_free(state); } SR_PRIV int hmo_init_device(struct sr_dev_inst *sdi) { char tmp[25]; int model_index; unsigned int i, j; struct sr_probe *probe; struct dev_context *devc; devc = sdi->priv; model_index = -1; /* Find the exact model. */ for (i = 0; i < ARRAY_SIZE(scope_models); i++) { for (j = 0; scope_models[i].name[j]; j++) { if (!strcmp(sdi->model, scope_models[i].name[j])) { model_index = i; break; } } if (model_index != -1) break; } if (model_index == -1) { sr_dbg("Unsupported HMO device."); return SR_ERR_NA; } if (!(devc->analog_groups = g_try_malloc0(sizeof(struct sr_probe_group) * scope_models[model_index].analog_channels))) return SR_ERR_MALLOC; if (!(devc->digital_groups = g_try_malloc0(sizeof(struct sr_probe_group) * scope_models[model_index].digital_pods))) return SR_ERR_MALLOC; /* Add analog channels. */ for (i = 0; i < scope_models[model_index].analog_channels; i++) { if (!(probe = sr_probe_new(i, SR_PROBE_ANALOG, TRUE, (*scope_models[model_index].analog_names)[i]))) return SR_ERR_MALLOC; sdi->probes = g_slist_append(sdi->probes, probe); devc->analog_groups[i].name = (char *)(*scope_models[model_index].analog_names)[i]; devc->analog_groups[i].probes = g_slist_append(NULL, probe); sdi->probe_groups = g_slist_append(sdi->probe_groups, &devc->analog_groups[i]); } /* Add digital probe groups. */ for (i = 0; i < scope_models[model_index].digital_pods; ++i) { g_snprintf(tmp, 25, "POD%d", i); devc->digital_groups[i].name = g_strdup(tmp); sdi->probe_groups = g_slist_append(sdi->probe_groups, &devc->digital_groups[i < 8 ? 0 : 1]); } /* Add digital channels. */ for (i = 0; i < scope_models[model_index].digital_channels; i++) { if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE, (*scope_models[model_index].digital_names)[i]))) return SR_ERR_MALLOC; sdi->probes = g_slist_append(sdi->probes, probe); devc->digital_groups[i < 8 ? 0 : 1].probes = g_slist_append( devc->digital_groups[i < 8 ? 0 : 1].probes, probe); } devc->model_config = &scope_models[model_index]; devc->frame_limit = 0; if (!(devc->model_state = scope_state_new(devc->model_config))) return SR_ERR_MALLOC; return SR_OK; } SR_PRIV int hmo_receive_data(int fd, int revents, void *cb_data) { struct sr_probe *probe; struct sr_dev_inst *sdi; struct dev_context *devc; struct sr_datafeed_packet packet; GArray *data; struct sr_datafeed_analog analog; struct sr_datafeed_logic logic; (void)fd; if (!(sdi = cb_data)) return TRUE; if (!(devc = sdi->priv)) return TRUE; if (revents == G_IO_IN) { probe = devc->current_probe->data; switch (probe->type) { case SR_PROBE_ANALOG: if (sr_scpi_get_floatv(sdi->conn, NULL, &data) != SR_OK) { if (data) g_array_free(data, TRUE); return TRUE; } packet.type = SR_DF_FRAME_BEGIN; sr_session_send(sdi, &packet); analog.probes = g_slist_append(NULL, probe); analog.num_samples = data->len; analog.data = (float *) data->data; analog.mq = SR_MQ_VOLTAGE; analog.unit = SR_UNIT_VOLT; analog.mqflags = 0; packet.type = SR_DF_ANALOG; packet.payload = &analog; sr_session_send(cb_data, &packet); g_slist_free(analog.probes); g_array_free(data, TRUE); break; case SR_PROBE_LOGIC: if (sr_scpi_get_uint8v(sdi->conn, NULL, &data) != SR_OK) { if (data) g_free(data); return TRUE; } packet.type = SR_DF_FRAME_BEGIN; sr_session_send(sdi, &packet); logic.length = data->len; logic.unitsize = 1; logic.data = data->data; packet.type = SR_DF_LOGIC; packet.payload = &logic; sr_session_send(cb_data, &packet); g_array_free(data, TRUE); break; default: sr_err("Invalid probe type."); break; } packet.type = SR_DF_FRAME_END; sr_session_send(sdi, &packet); if (devc->current_probe->next) { devc->current_probe = devc->current_probe->next; hmo_request_data(sdi); } else if (++devc->num_frames == devc->frame_limit) { sdi->driver->dev_acquisition_stop(sdi, cb_data); } else { devc->current_probe = devc->enabled_probes; hmo_request_data(sdi); } } return TRUE; }