/* * This file is part of the libsigrok project. * * Copyright (C) 2013 poljar (Damir Jelić) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "scpi.h" #include "protocol.h" #define SERIALCOMM "115200/8n1/flow=1" static struct sr_dev_driver hameg_hmo_driver_info; static const char *manufacturers[] = { "HAMEG", "Rohde&Schwarz", }; static const uint32_t drvopts[] = { SR_CONF_OSCILLOSCOPE, }; static const uint32_t scanopts[] = { SR_CONF_CONN, SR_CONF_SERIALCOMM, }; enum { CG_INVALID = -1, CG_NONE, CG_ANALOG, CG_DIGITAL, }; static int check_manufacturer(const char *manufacturer) { unsigned int i; for (i = 0; i < ARRAY_SIZE(manufacturers); i++) if (!strcmp(manufacturer, manufacturers[i])) return SR_OK; return SR_ERR; } static struct sr_dev_inst *hmo_probe_serial_device(struct sr_scpi_dev_inst *scpi) { struct sr_dev_inst *sdi; struct dev_context *devc; struct sr_scpi_hw_info *hw_info; sdi = NULL; devc = NULL; hw_info = NULL; if (sr_scpi_get_hw_id(scpi, &hw_info) != SR_OK) { sr_info("Couldn't get IDN response."); goto fail; } if (check_manufacturer(hw_info->manufacturer) != SR_OK) goto fail; sdi = g_malloc0(sizeof(struct sr_dev_inst)); sdi->vendor = g_strdup(hw_info->manufacturer); sdi->model = g_strdup(hw_info->model); sdi->version = g_strdup(hw_info->firmware_version); sdi->serial_num = g_strdup(hw_info->serial_number); sdi->driver = &hameg_hmo_driver_info; sdi->inst_type = SR_INST_SCPI; sdi->conn = scpi; sr_scpi_hw_info_free(hw_info); hw_info = NULL; devc = g_malloc0(sizeof(struct dev_context)); sdi->priv = devc; if (hmo_init_device(sdi) != SR_OK) goto fail; return sdi; fail: if (hw_info) sr_scpi_hw_info_free(hw_info); if (sdi) sr_dev_inst_free(sdi); g_free(devc); return NULL; } static GSList *scan(struct sr_dev_driver *di, GSList *options) { return sr_scpi_scan(di->context, options, hmo_probe_serial_device); } static void clear_helper(void *priv) { struct dev_context *devc; devc = priv; hmo_scope_state_free(devc->model_state); g_free(devc->analog_groups); g_free(devc->digital_groups); g_free(devc); } static int dev_clear(const struct sr_dev_driver *di) { return std_dev_clear(di, clear_helper); } static int dev_open(struct sr_dev_inst *sdi) { if (sdi->status != SR_ST_ACTIVE && sr_scpi_open(sdi->conn) != SR_OK) return SR_ERR; if (hmo_scope_state_get(sdi) != SR_OK) return SR_ERR; sdi->status = SR_ST_ACTIVE; return SR_OK; } static int dev_close(struct sr_dev_inst *sdi) { if (sdi->status == SR_ST_INACTIVE) return SR_OK; sr_scpi_close(sdi->conn); sdi->status = SR_ST_INACTIVE; return SR_OK; } static int check_channel_group(struct dev_context *devc, const struct sr_channel_group *cg) { unsigned int i; const struct scope_config *model; model = devc->model_config; if (!cg) return CG_NONE; for (i = 0; i < model->analog_channels; i++) if (cg == devc->analog_groups[i]) return CG_ANALOG; for (i = 0; i < model->digital_pods; i++) if (cg == devc->digital_groups[i]) return CG_DIGITAL; sr_err("Invalid channel group specified."); return CG_INVALID; } static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { int ret, cg_type; unsigned int i; struct dev_context *devc; const struct scope_config *model; struct scope_state *state; if (!sdi) return SR_ERR_ARG; devc = sdi->priv; if ((cg_type = check_channel_group(devc, cg)) == CG_INVALID) return SR_ERR; ret = SR_ERR_NA; model = devc->model_config; state = devc->model_state; switch (key) { case SR_CONF_NUM_HDIV: *data = g_variant_new_int32(model->num_xdivs); ret = SR_OK; break; case SR_CONF_TIMEBASE: *data = g_variant_new("(tt)", (*model->timebases)[state->timebase][0], (*model->timebases)[state->timebase][1]); ret = SR_OK; break; case SR_CONF_NUM_VDIV: if (cg_type == CG_NONE) { sr_err("No channel group specified."); return SR_ERR_CHANNEL_GROUP; } else if (cg_type == CG_ANALOG) { for (i = 0; i < model->analog_channels; i++) { if (cg != devc->analog_groups[i]) continue; *data = g_variant_new_int32(model->num_ydivs); ret = SR_OK; break; } } else { ret = SR_ERR_NA; } break; case SR_CONF_VDIV: if (cg_type == CG_NONE) { sr_err("No channel group specified."); return SR_ERR_CHANNEL_GROUP; } else if (cg_type == CG_ANALOG) { for (i = 0; i < model->analog_channels; i++) { if (cg != devc->analog_groups[i]) continue; *data = g_variant_new("(tt)", (*model->vdivs)[state->analog_channels[i].vdiv][0], (*model->vdivs)[state->analog_channels[i].vdiv][1]); ret = SR_OK; break; } } else { ret = SR_ERR_NA; } break; case SR_CONF_TRIGGER_SOURCE: *data = g_variant_new_string((*model->trigger_sources)[state->trigger_source]); ret = SR_OK; break; case SR_CONF_TRIGGER_SLOPE: *data = g_variant_new_string((*model->trigger_slopes)[state->trigger_slope]); ret = SR_OK; break; case SR_CONF_HORIZ_TRIGGERPOS: *data = g_variant_new_double(state->horiz_triggerpos); ret = SR_OK; break; case SR_CONF_COUPLING: if (cg_type == CG_NONE) { sr_err("No channel group specified."); return SR_ERR_CHANNEL_GROUP; } else if (cg_type == CG_ANALOG) { for (i = 0; i < model->analog_channels; i++) { if (cg != devc->analog_groups[i]) continue; *data = g_variant_new_string((*model->coupling_options)[state->analog_channels[i].coupling]); ret = SR_OK; break; } } else { ret = SR_ERR_NA; } break; case SR_CONF_SAMPLERATE: *data = g_variant_new_uint64(state->sample_rate); ret = SR_OK; break; default: ret = SR_ERR_NA; } return ret; } static GVariant *build_tuples(const uint64_t (*array)[][2], unsigned int n) { unsigned int i; GVariant *rational[2]; GVariantBuilder gvb; g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY); for (i = 0; i < n; i++) { rational[0] = g_variant_new_uint64((*array)[i][0]); rational[1] = g_variant_new_uint64((*array)[i][1]); /* FIXME: Valgrind reports a memory leak here. */ g_variant_builder_add_value(&gvb, g_variant_new_tuple(rational, 2)); } return g_variant_builder_end(&gvb); } static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { int ret, cg_type; unsigned int i, j; char command[MAX_COMMAND_SIZE], float_str[30]; struct dev_context *devc; const struct scope_config *model; struct scope_state *state; const char *tmp; uint64_t p, q; double tmp_d; gboolean update_sample_rate; if (!sdi) return SR_ERR_ARG; devc = sdi->priv; if ((cg_type = check_channel_group(devc, cg)) == CG_INVALID) return SR_ERR; model = devc->model_config; state = devc->model_state; update_sample_rate = FALSE; ret = SR_ERR_NA; switch (key) { case SR_CONF_LIMIT_FRAMES: devc->frame_limit = g_variant_get_uint64(data); ret = SR_OK; break; case SR_CONF_TRIGGER_SOURCE: tmp = g_variant_get_string(data, NULL); for (i = 0; (*model->trigger_sources)[i]; i++) { if (g_strcmp0(tmp, (*model->trigger_sources)[i]) != 0) continue; state->trigger_source = i; g_snprintf(command, sizeof(command), (*model->scpi_dialect)[SCPI_CMD_SET_TRIGGER_SOURCE], (*model->trigger_sources)[i]); ret = sr_scpi_send(sdi->conn, command); break; } break; case SR_CONF_VDIV: if (cg_type == CG_NONE) { sr_err("No channel group specified."); return SR_ERR_CHANNEL_GROUP; } g_variant_get(data, "(tt)", &p, &q); for (i = 0; i < model->num_vdivs; i++) { if (p != (*model->vdivs)[i][0] || q != (*model->vdivs)[i][1]) continue; for (j = 1; j <= model->analog_channels; j++) { if (cg != devc->analog_groups[j - 1]) continue; state->analog_channels[j - 1].vdiv = i; g_ascii_formatd(float_str, sizeof(float_str), "%E", (float) p / q); g_snprintf(command, sizeof(command), (*model->scpi_dialect)[SCPI_CMD_SET_VERTICAL_DIV], j, float_str); if (sr_scpi_send(sdi->conn, command) != SR_OK || sr_scpi_get_opc(sdi->conn) != SR_OK) return SR_ERR; break; } ret = SR_OK; break; } break; case SR_CONF_TIMEBASE: g_variant_get(data, "(tt)", &p, &q); for (i = 0; i < model->num_timebases; i++) { if (p != (*model->timebases)[i][0] || q != (*model->timebases)[i][1]) continue; state->timebase = i; g_ascii_formatd(float_str, sizeof(float_str), "%E", (float) p / q); g_snprintf(command, sizeof(command), (*model->scpi_dialect)[SCPI_CMD_SET_TIMEBASE], float_str); ret = sr_scpi_send(sdi->conn, command); update_sample_rate = TRUE; break; } break; case SR_CONF_HORIZ_TRIGGERPOS: tmp_d = g_variant_get_double(data); if (tmp_d < 0.0 || tmp_d > 1.0) return SR_ERR; state->horiz_triggerpos = tmp_d; tmp_d = -(tmp_d - 0.5) * ((double) (*model->timebases)[state->timebase][0] / (*model->timebases)[state->timebase][1]) * model->num_xdivs; g_ascii_formatd(float_str, sizeof(float_str), "%E", tmp_d); g_snprintf(command, sizeof(command), (*model->scpi_dialect)[SCPI_CMD_SET_HORIZ_TRIGGERPOS], float_str); ret = sr_scpi_send(sdi->conn, command); break; case SR_CONF_TRIGGER_SLOPE: tmp = g_variant_get_string(data, NULL); for (i = 0; (*model->trigger_slopes)[i]; i++) { if (g_strcmp0(tmp, (*model->trigger_slopes)[i]) != 0) continue; state->trigger_slope = i; g_snprintf(command, sizeof(command), (*model->scpi_dialect)[SCPI_CMD_SET_TRIGGER_SLOPE], (*model->trigger_slopes)[i]); ret = sr_scpi_send(sdi->conn, command); break; } break; case SR_CONF_COUPLING: if (cg_type == CG_NONE) { sr_err("No channel group specified."); return SR_ERR_CHANNEL_GROUP; } tmp = g_variant_get_string(data, NULL); for (i = 0; (*model->coupling_options)[i]; i++) { if (strcmp(tmp, (*model->coupling_options)[i]) != 0) continue; for (j = 1; j <= model->analog_channels; j++) { if (cg != devc->analog_groups[j - 1]) continue; state->analog_channels[j-1].coupling = i; g_snprintf(command, sizeof(command), (*model->scpi_dialect)[SCPI_CMD_SET_COUPLING], j, tmp); if (sr_scpi_send(sdi->conn, command) != SR_OK || sr_scpi_get_opc(sdi->conn) != SR_OK) return SR_ERR; break; } ret = SR_OK; break; } break; default: ret = SR_ERR_NA; break; } if (ret == SR_OK) ret = sr_scpi_get_opc(sdi->conn); if (ret == SR_OK && update_sample_rate) ret = hmo_update_sample_rate(sdi); return ret; } static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { int cg_type = CG_NONE; struct dev_context *devc = NULL; const struct scope_config *model = NULL; if (sdi) { devc = sdi->priv; if ((cg_type = check_channel_group(devc, cg)) == CG_INVALID) return SR_ERR; model = devc->model_config; } switch (key) { case SR_CONF_SCAN_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t)); break; case SR_CONF_DEVICE_OPTIONS: if (cg_type == CG_NONE) { if (model) *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, model->devopts, model->num_devopts, sizeof(uint32_t)); else *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t)); } else if (cg_type == CG_ANALOG) { *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, model->analog_devopts, model->num_analog_devopts, sizeof(uint32_t)); } else { *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, NULL, 0, sizeof(uint32_t)); } break; case SR_CONF_COUPLING: if (cg_type == CG_NONE) return SR_ERR_CHANNEL_GROUP; *data = g_variant_new_strv(*model->coupling_options, g_strv_length((char **)*model->coupling_options)); break; case SR_CONF_TRIGGER_SOURCE: if (!model) return SR_ERR_ARG; *data = g_variant_new_strv(*model->trigger_sources, g_strv_length((char **)*model->trigger_sources)); break; case SR_CONF_TRIGGER_SLOPE: if (!model) return SR_ERR_ARG; *data = g_variant_new_strv(*model->trigger_slopes, g_strv_length((char **)*model->trigger_slopes)); break; case SR_CONF_TIMEBASE: if (!model) return SR_ERR_ARG; *data = build_tuples(model->timebases, model->num_timebases); break; case SR_CONF_VDIV: if (cg_type == CG_NONE) return SR_ERR_CHANNEL_GROUP; *data = build_tuples(model->vdivs, model->num_vdivs); break; default: return SR_ERR_NA; } return SR_OK; } SR_PRIV int hmo_request_data(const struct sr_dev_inst *sdi) { char command[MAX_COMMAND_SIZE]; struct sr_channel *ch; struct dev_context *devc; const struct scope_config *model; devc = sdi->priv; model = devc->model_config; ch = devc->current_channel->data; switch (ch->type) { case SR_CHANNEL_ANALOG: g_snprintf(command, sizeof(command), (*model->scpi_dialect)[SCPI_CMD_GET_ANALOG_DATA], ch->index + 1); break; case SR_CHANNEL_LOGIC: g_snprintf(command, sizeof(command), (*model->scpi_dialect)[SCPI_CMD_GET_DIG_DATA], ch->index < 8 ? 1 : 2); break; default: sr_err("Invalid channel type."); break; } return sr_scpi_send(sdi->conn, command); } static int hmo_check_channels(GSList *channels) { GSList *l; struct sr_channel *ch; gboolean enabled_pod1, enabled_pod2, enabled_chan3, enabled_chan4; enabled_pod1 = enabled_pod2 = enabled_chan3 = enabled_chan4 = FALSE; for (l = channels; l; l = l->next) { ch = l->data; switch (ch->type) { case SR_CHANNEL_ANALOG: if (ch->index == 2) enabled_chan3 = TRUE; else if (ch->index == 3) enabled_chan4 = TRUE; break; case SR_CHANNEL_LOGIC: if (ch->index < 8) enabled_pod1 = TRUE; else enabled_pod2 = TRUE; break; default: return SR_ERR; } } if ((enabled_pod1 && enabled_chan3) || (enabled_pod2 && enabled_chan4)) return SR_ERR; return SR_OK; } static int hmo_setup_channels(const struct sr_dev_inst *sdi) { GSList *l; unsigned int i; gboolean *pod_enabled, setup_changed; char command[MAX_COMMAND_SIZE]; struct scope_state *state; const struct scope_config *model; struct sr_channel *ch; struct dev_context *devc; struct sr_scpi_dev_inst *scpi; devc = sdi->priv; scpi = sdi->conn; state = devc->model_state; model = devc->model_config; setup_changed = FALSE; pod_enabled = g_try_malloc0(sizeof(gboolean) * model->digital_pods); for (l = sdi->channels; l; l = l->next) { ch = l->data; switch (ch->type) { case SR_CHANNEL_ANALOG: if (ch->enabled == state->analog_channels[ch->index].state) break; g_snprintf(command, sizeof(command), (*model->scpi_dialect)[SCPI_CMD_SET_ANALOG_CHAN_STATE], ch->index + 1, ch->enabled); if (sr_scpi_send(scpi, command) != SR_OK) return SR_ERR; state->analog_channels[ch->index].state = ch->enabled; setup_changed = TRUE; break; case SR_CHANNEL_LOGIC: /* * A digital POD needs to be enabled for every group of * 8 channels. */ if (ch->enabled) pod_enabled[ch->index < 8 ? 0 : 1] = TRUE; if (ch->enabled == state->digital_channels[ch->index]) break; g_snprintf(command, sizeof(command), (*model->scpi_dialect)[SCPI_CMD_SET_DIG_CHAN_STATE], ch->index, ch->enabled); if (sr_scpi_send(scpi, command) != SR_OK) return SR_ERR; state->digital_channels[ch->index] = ch->enabled; setup_changed = TRUE; break; default: return SR_ERR; } } for (i = 1; i <= model->digital_pods; i++) { if (state->digital_pods[i - 1] == pod_enabled[i - 1]) continue; g_snprintf(command, sizeof(command), (*model->scpi_dialect)[SCPI_CMD_SET_DIG_POD_STATE], i, pod_enabled[i - 1]); if (sr_scpi_send(scpi, command) != SR_OK) return SR_ERR; state->digital_pods[i - 1] = pod_enabled[i - 1]; setup_changed = TRUE; } g_free(pod_enabled); if (setup_changed && hmo_update_sample_rate(sdi) != SR_OK) return SR_ERR; return SR_OK; } static int dev_acquisition_start(const struct sr_dev_inst *sdi) { GSList *l; gboolean digital_added; struct sr_channel *ch; struct dev_context *devc; struct sr_scpi_dev_inst *scpi; int ret; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; scpi = sdi->conn; devc = sdi->priv; digital_added = FALSE; g_slist_free(devc->enabled_channels); devc->enabled_channels = NULL; for (l = sdi->channels; l; l = l->next) { ch = l->data; if (!ch->enabled) continue; /* Only add a single digital channel. */ if (ch->type != SR_CHANNEL_LOGIC || !digital_added) { devc->enabled_channels = g_slist_append( devc->enabled_channels, ch); if (ch->type == SR_CHANNEL_LOGIC) digital_added = TRUE; } } if (!devc->enabled_channels) return SR_ERR; if (hmo_check_channels(devc->enabled_channels) != SR_OK) { sr_err("Invalid channel configuration specified!"); ret = SR_ERR_NA; goto free_enabled; } if (hmo_setup_channels(sdi) != SR_OK) { sr_err("Failed to setup channel configuration!"); ret = SR_ERR; goto free_enabled; } sr_scpi_source_add(sdi->session, scpi, G_IO_IN, 50, hmo_receive_data, (void *)sdi); std_session_send_df_header(sdi); devc->current_channel = devc->enabled_channels; return hmo_request_data(sdi); free_enabled: g_slist_free(devc->enabled_channels); devc->enabled_channels = NULL; return ret; } static int dev_acquisition_stop(struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_scpi_dev_inst *scpi; std_session_send_df_end(sdi); if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; devc = sdi->priv; devc->num_frames = 0; g_slist_free(devc->enabled_channels); devc->enabled_channels = NULL; scpi = sdi->conn; sr_scpi_source_remove(sdi->session, scpi); return SR_OK; } static struct sr_dev_driver hameg_hmo_driver_info = { .name = "hameg-hmo", .longname = "Hameg HMO", .api_version = 1, .init = std_init, .cleanup = std_cleanup, .scan = scan, .dev_list = std_dev_list, .dev_clear = dev_clear, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .context = NULL, }; SR_REGISTER_DEV_DRIVER(hameg_hmo_driver_info);