/* * This file is part of the libsigrok project. * * Copyright (C) 2014 Daniel Elstner * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "protocol.h" #include /* Bit mask for the RLE repeat-count-follows flag. */ #define RLE_FLAG_LEN_FOLLOWS ((uint64_t)1 << 35) /* Start address of capture status memory area to read. */ #define CAP_STAT_ADDR 5 /* Number of 64-bit words read from the capture status memory. */ #define CAP_STAT_LEN 5 /* The bitstream filenames are indexed by the clock_config enumeration. */ static const char bitstream_map[][32] = { "sysclk-lwla1034-off.rbf", "sysclk-lwla1034-int.rbf", "sysclk-lwla1034-extpos.rbf", "sysclk-lwla1034-extneg.rbf", }; /* Submit an already filled-in USB transfer. */ static int submit_transfer(struct dev_context *devc, struct libusb_transfer *xfer) { int ret; ret = libusb_submit_transfer(xfer); if (ret != 0) { sr_err("Submit transfer failed: %s.", libusb_error_name(ret)); devc->transfer_error = TRUE; return SR_ERR; } return SR_OK; } /* Set up the LWLA in preparation for an acquisition session. */ static int capture_setup(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct acquisition_state *acq; uint64_t divider_count; uint64_t trigger_mask; uint64_t memory_limit; uint16_t command[3 + 10*4]; devc = sdi->priv; acq = devc->acquisition; command[0] = LWLA_WORD(CMD_CAP_SETUP); command[1] = LWLA_WORD(0); /* address */ command[2] = LWLA_WORD(10); /* length */ command[3] = LWLA_WORD_0(devc->channel_mask); command[4] = LWLA_WORD_1(devc->channel_mask); command[5] = LWLA_WORD_2(devc->channel_mask); command[6] = LWLA_WORD_3(devc->channel_mask); /* Set the clock divide counter maximum for samplerates of up to * 100 MHz. At the highest samplerate of 125 MHz the clock divider * is bypassed. */ if (!acq->bypass_clockdiv && devc->samplerate > 0) divider_count = SR_MHZ(100) / devc->samplerate - 1; else divider_count = 0; command[7] = LWLA_WORD_0(divider_count); command[8] = LWLA_WORD_1(divider_count); command[9] = LWLA_WORD_2(divider_count); command[10] = LWLA_WORD_3(divider_count); command[11] = LWLA_WORD_0(devc->trigger_values); command[12] = LWLA_WORD_1(devc->trigger_values); command[13] = LWLA_WORD_2(devc->trigger_values); command[14] = LWLA_WORD_3(devc->trigger_values); command[15] = LWLA_WORD_0(devc->trigger_edge_mask); command[16] = LWLA_WORD_1(devc->trigger_edge_mask); command[17] = LWLA_WORD_2(devc->trigger_edge_mask); command[18] = LWLA_WORD_3(devc->trigger_edge_mask); trigger_mask = devc->trigger_mask; /* Set bits to select external TRG input edge. */ if (devc->cfg_trigger_source == TRIGGER_EXT_TRG) switch (devc->cfg_trigger_slope) { case EDGE_POSITIVE: trigger_mask |= (uint64_t)1 << 35; break; case EDGE_NEGATIVE: trigger_mask |= (uint64_t)1 << 34; break; } command[19] = LWLA_WORD_0(trigger_mask); command[20] = LWLA_WORD_1(trigger_mask); command[21] = LWLA_WORD_2(trigger_mask); command[22] = LWLA_WORD_3(trigger_mask); /* Set the capture memory full threshold. This is slightly less * than the actual maximum, most likely in order to compensate for * pipeline latency. */ memory_limit = MEMORY_DEPTH - 16; command[23] = LWLA_WORD_0(memory_limit); command[24] = LWLA_WORD_1(memory_limit); command[25] = LWLA_WORD_2(memory_limit); command[26] = LWLA_WORD_3(memory_limit); /* Fill remaining 64-bit words with zeroes. */ memset(&command[27], 0, 16 * sizeof(uint16_t)); return lwla_send_command(sdi->conn, command, G_N_ELEMENTS(command)); } /* Issue a register write command as an asynchronous USB transfer. */ static int issue_write_reg(const struct sr_dev_inst *sdi, unsigned int reg, unsigned int value) { struct dev_context *devc; struct acquisition_state *acq; devc = sdi->priv; acq = devc->acquisition; acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG); acq->xfer_buf_out[1] = LWLA_WORD(reg); acq->xfer_buf_out[2] = LWLA_WORD_0(value); acq->xfer_buf_out[3] = LWLA_WORD_1(value); acq->xfer_out->length = 4 * sizeof(uint16_t); return submit_transfer(devc, acq->xfer_out); } /* Issue a register write command as an asynchronous USB transfer for the * next register/value pair of the currently active register write sequence. */ static int issue_next_write_reg(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct regval_pair *regval; int ret; devc = sdi->priv; if (devc->reg_write_pos >= devc->reg_write_len) { sr_err("Already written all registers in sequence."); return SR_ERR_BUG; } regval = &devc->reg_write_seq[devc->reg_write_pos]; ret = issue_write_reg(sdi, regval->reg, regval->val); if (ret != SR_OK) return ret; ++devc->reg_write_pos; return SR_OK; } /* Issue a capture status request as an asynchronous USB transfer. */ static void request_capture_status(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct acquisition_state *acq; devc = sdi->priv; acq = devc->acquisition; acq->xfer_buf_out[0] = LWLA_WORD(CMD_CAP_STATUS); acq->xfer_buf_out[1] = LWLA_WORD(CAP_STAT_ADDR); acq->xfer_buf_out[2] = LWLA_WORD(CAP_STAT_LEN); acq->xfer_out->length = 3 * sizeof(uint16_t); if (submit_transfer(devc, acq->xfer_out) == SR_OK) devc->state = STATE_STATUS_REQUEST; } /* Issue a request for the capture buffer fill level as * an asynchronous USB transfer. */ static void request_capture_length(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct acquisition_state *acq; devc = sdi->priv; acq = devc->acquisition; acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG); acq->xfer_buf_out[1] = LWLA_WORD(REG_MEM_FILL); acq->xfer_out->length = 2 * sizeof(uint16_t); if (submit_transfer(devc, acq->xfer_out) == SR_OK) devc->state = STATE_LENGTH_REQUEST; } /* Initiate the capture memory read operation: Reset the acquisition state * and start a sequence of register writes in order to set up the device for * reading from the capture buffer. */ static void issue_read_start(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct acquisition_state *acq; struct regval_pair *regvals; devc = sdi->priv; acq = devc->acquisition; /* Reset RLE state. */ acq->rle = RLE_STATE_DATA; acq->sample = 0; acq->run_len = 0; acq->samples_done = 0; /* For some reason, the start address is 4 rather than 0. */ acq->mem_addr_done = 4; acq->mem_addr_next = 4; acq->mem_addr_stop = acq->mem_addr_fill; /* Sample position in the packet output buffer. */ acq->out_index = 0; regvals = devc->reg_write_seq; regvals[0].reg = REG_DIV_BYPASS; regvals[0].val = 1; regvals[1].reg = REG_MEM_CTRL2; regvals[1].val = 2; regvals[2].reg = REG_MEM_CTRL4; regvals[2].val = 4; devc->reg_write_pos = 0; devc->reg_write_len = 3; if (issue_next_write_reg(sdi) == SR_OK) devc->state = STATE_READ_PREPARE; } /* Issue a command as an asynchronous USB transfer which returns the device * to normal state after a read operation. Sets a new device context state * on success. */ static void issue_read_end(const struct sr_dev_inst *sdi) { struct dev_context *devc; devc = sdi->priv; if (issue_write_reg(sdi, REG_DIV_BYPASS, 0) == SR_OK) devc->state = STATE_READ_END; } /* Decode an incoming reponse to a buffer fill level request and act on it * as appropriate. Note that this function changes the device context state. */ static void process_capture_length(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct acquisition_state *acq; devc = sdi->priv; acq = devc->acquisition; if (acq->xfer_in->actual_length != 4) { sr_err("Received size %d doesn't match expected size 4.", acq->xfer_in->actual_length); devc->transfer_error = TRUE; return; } acq->mem_addr_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]); sr_dbg("%zu words in capture buffer.", acq->mem_addr_fill); if (acq->mem_addr_fill > 0 && sdi->status == SR_ST_ACTIVE) issue_read_start(sdi); else issue_read_end(sdi); } /* Initiate a sequence of register write commands with the effect of * cancelling a running capture operation. This sets a new device state * if issuing the first command succeeds. */ static void issue_stop_capture(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct regval_pair *regvals; devc = sdi->priv; if (devc->stopping_in_progress) return; regvals = devc->reg_write_seq; regvals[0].reg = REG_CMD_CTRL2; regvals[0].val = 10; regvals[1].reg = REG_CMD_CTRL3; regvals[1].val = 0; regvals[2].reg = REG_CMD_CTRL4; regvals[2].val = 0; regvals[3].reg = REG_CMD_CTRL1; regvals[3].val = 0; regvals[4].reg = REG_DIV_BYPASS; regvals[4].val = 0; devc->reg_write_pos = 0; devc->reg_write_len = 5; if (issue_next_write_reg(sdi) == SR_OK) { devc->stopping_in_progress = TRUE; devc->state = STATE_STOP_CAPTURE; } } /* Decode an incoming capture status reponse and act on it as appropriate. * Note that this function changes the device state. */ static void process_capture_status(const struct sr_dev_inst *sdi) { uint64_t duration; struct dev_context *devc; struct acquisition_state *acq; unsigned int mem_fill; unsigned int flags; devc = sdi->priv; acq = devc->acquisition; if (acq->xfer_in->actual_length != CAP_STAT_LEN * 8) { sr_err("Received size %d doesn't match expected size %d.", acq->xfer_in->actual_length, CAP_STAT_LEN * 8); devc->transfer_error = TRUE; return; } /* TODO: Find out the actual bit width of these fields as stored * in the FPGA. These fields are definitely less than 64 bit wide * internally, and the unused bits occasionally even contain garbage. */ mem_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]); duration = LWLA_TO_UINT32(acq->xfer_buf_in[4]); flags = LWLA_TO_UINT32(acq->xfer_buf_in[8]) & STATUS_FLAG_MASK; /* The LWLA1034 runs at 125 MHz if the clock divider is bypassed. * However, the time base used for the duration is apparently not * adjusted for this "boost" mode. Whereas normally the duration * unit is 1 ms, it is 0.8 ms when the clock divider is bypassed. * As 0.8 = 100 MHz / 125 MHz, it seems that the internal cycle * counter period is the same as at the 100 MHz setting. */ if (acq->bypass_clockdiv) acq->duration_now = duration * 4 / 5; else acq->duration_now = duration; sr_spew("Captured %u words, %" PRIu64 " ms, flags 0x%02X.", mem_fill, acq->duration_now, flags); if ((flags & STATUS_TRIGGERED) > (acq->capture_flags & STATUS_TRIGGERED)) sr_info("Capture triggered."); acq->capture_flags = flags; if (acq->duration_now >= acq->duration_max) { sr_dbg("Time limit reached, stopping capture."); issue_stop_capture(sdi); return; } devc->state = STATE_STATUS_WAIT; if ((acq->capture_flags & STATUS_TRIGGERED) == 0) { sr_spew("Waiting for trigger."); } else if ((acq->capture_flags & STATUS_MEM_AVAIL) == 0) { sr_dbg("Capture memory filled."); request_capture_length(sdi); } else if ((acq->capture_flags & STATUS_CAPTURING) != 0) { sr_spew("Sampling in progress."); } } /* Issue a capture buffer read request as an asynchronous USB transfer. * The address and size of the memory area to read are derived from the * current acquisition state. */ static void request_read_mem(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct acquisition_state *acq; size_t count; devc = sdi->priv; acq = devc->acquisition; if (acq->mem_addr_next >= acq->mem_addr_stop) return; /* Always read a multiple of 8 device words. */ count = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8; count = MIN(count, READ_CHUNK_LEN); acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM); acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next); acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next); acq->xfer_buf_out[3] = LWLA_WORD_0(count); acq->xfer_buf_out[4] = LWLA_WORD_1(count); acq->xfer_out->length = 5 * sizeof(uint16_t); if (submit_transfer(devc, acq->xfer_out) == SR_OK) { acq->mem_addr_next += count; devc->state = STATE_READ_REQUEST; } } /* Demangle and decompress incoming sample data from the capture buffer. * The data chunk is taken from the acquisition state, and is expected to * contain a multiple of 8 device words. * All data currently in the acquisition buffer will be processed. Packets * of decoded samples are sent off to the session bus whenever the output * buffer becomes full while decoding. */ static int process_sample_data(const struct sr_dev_inst *sdi) { uint64_t sample; uint64_t high_nibbles; uint64_t word; struct dev_context *devc; struct acquisition_state *acq; uint8_t *out_p; uint32_t *slice; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; size_t expect_len; size_t actual_len; size_t out_max_samples; size_t out_run_samples; size_t ri; size_t in_words_left; size_t si; devc = sdi->priv; acq = devc->acquisition; if (acq->mem_addr_done >= acq->mem_addr_stop || acq->samples_done >= acq->samples_max) return SR_OK; in_words_left = MIN(acq->mem_addr_stop - acq->mem_addr_done, READ_CHUNK_LEN); expect_len = LWLA1034_MEMBUF_LEN(in_words_left) * sizeof(uint32_t); actual_len = acq->xfer_in->actual_length; if (actual_len != expect_len) { sr_err("Received size %zu does not match expected size %zu.", actual_len, expect_len); devc->transfer_error = TRUE; return SR_ERR; } acq->mem_addr_done += in_words_left; /* Prepare session packet. */ packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.unitsize = UNIT_SIZE; logic.data = acq->out_packet; slice = acq->xfer_buf_in; si = 0; /* word index within slice */ for (;;) { /* Calculate number of samples to write into packet. */ out_max_samples = MIN(acq->samples_max - acq->samples_done, PACKET_LENGTH - acq->out_index); out_run_samples = MIN(acq->run_len, out_max_samples); /* Expand run-length samples into session packet. */ sample = acq->sample; out_p = &acq->out_packet[acq->out_index * UNIT_SIZE]; for (ri = 0; ri < out_run_samples; ++ri) { out_p[0] = sample & 0xFF; out_p[1] = (sample >> 8) & 0xFF; out_p[2] = (sample >> 16) & 0xFF; out_p[3] = (sample >> 24) & 0xFF; out_p[4] = (sample >> 32) & 0xFF; out_p += UNIT_SIZE; } acq->run_len -= out_run_samples; acq->out_index += out_run_samples; acq->samples_done += out_run_samples; /* Packet full or sample count limit reached? */ if (out_run_samples == out_max_samples) { logic.length = acq->out_index * UNIT_SIZE; sr_session_send(sdi, &packet); acq->out_index = 0; if (acq->samples_done >= acq->samples_max) return SR_OK; /* sample limit reached */ if (acq->run_len > 0) continue; /* need another packet */ } if (in_words_left == 0) break; /* done with current chunk */ /* Now work on the current slice. */ high_nibbles = LWLA_TO_UINT32(slice[8]); word = LWLA_TO_UINT32(slice[si]); word |= (high_nibbles << (4 * si + 4)) & ((uint64_t)0xF << 32); if (acq->rle == RLE_STATE_DATA) { acq->sample = word & ALL_CHANNELS_MASK; acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1; if (word & RLE_FLAG_LEN_FOLLOWS) acq->rle = RLE_STATE_LEN; } else { acq->run_len += word << 1; acq->rle = RLE_STATE_DATA; } /* Move to next word. */ si = (si + 1) % 8; if (si == 0) slice += 9; --in_words_left; } /* Send out partially filled packet if this was the last chunk. */ if (acq->mem_addr_done >= acq->mem_addr_stop && acq->out_index > 0) { logic.length = acq->out_index * UNIT_SIZE; sr_session_send(sdi, &packet); acq->out_index = 0; } return SR_OK; } /* Finish an acquisition session. This sends the end packet to the session * bus and removes the listener for asynchronous USB transfers. */ static void end_acquisition(struct sr_dev_inst *sdi) { struct drv_context *drvc; struct dev_context *devc; struct sr_datafeed_packet packet; drvc = sdi->driver->priv; devc = sdi->priv; if (devc->state == STATE_IDLE) return; devc->state = STATE_IDLE; /* Remove USB file descriptors from polling. */ usb_source_remove(drvc->sr_ctx); packet.type = SR_DF_END; sr_session_send(sdi, &packet); lwla_free_acquisition_state(devc->acquisition); devc->acquisition = NULL; sdi->status = SR_ST_ACTIVE; } /* USB output transfer completion callback. */ static void receive_transfer_out(struct libusb_transfer *transfer) { struct sr_dev_inst *sdi; struct dev_context *devc; sdi = transfer->user_data; devc = sdi->priv; if (transfer->status != LIBUSB_TRANSFER_COMPLETED) { sr_err("Transfer to device failed: %d.", transfer->status); devc->transfer_error = TRUE; return; } if (devc->reg_write_pos < devc->reg_write_len) { issue_next_write_reg(sdi); } else { switch (devc->state) { case STATE_START_CAPTURE: devc->state = STATE_STATUS_WAIT; break; case STATE_STATUS_REQUEST: devc->state = STATE_STATUS_RESPONSE; submit_transfer(devc, devc->acquisition->xfer_in); break; case STATE_STOP_CAPTURE: if (sdi->status == SR_ST_ACTIVE) request_capture_length(sdi); else end_acquisition(sdi); break; case STATE_LENGTH_REQUEST: devc->state = STATE_LENGTH_RESPONSE; submit_transfer(devc, devc->acquisition->xfer_in); break; case STATE_READ_PREPARE: request_read_mem(sdi); break; case STATE_READ_REQUEST: devc->state = STATE_READ_RESPONSE; submit_transfer(devc, devc->acquisition->xfer_in); break; case STATE_READ_END: end_acquisition(sdi); break; default: sr_err("Unexpected device state %d.", devc->state); break; } } } /* USB input transfer completion callback. */ static void receive_transfer_in(struct libusb_transfer *transfer) { struct sr_dev_inst *sdi; struct dev_context *devc; struct acquisition_state *acq; sdi = transfer->user_data; devc = sdi->priv; acq = devc->acquisition; if (transfer->status != LIBUSB_TRANSFER_COMPLETED) { sr_err("Transfer from device failed: %d.", transfer->status); devc->transfer_error = TRUE; return; } switch (devc->state) { case STATE_STATUS_RESPONSE: process_capture_status(sdi); break; case STATE_LENGTH_RESPONSE: process_capture_length(sdi); break; case STATE_READ_RESPONSE: if (process_sample_data(sdi) == SR_OK && acq->mem_addr_next < acq->mem_addr_stop && acq->samples_done < acq->samples_max) request_read_mem(sdi); else issue_read_end(sdi); break; default: sr_err("Unexpected device state %d.", devc->state); break; } } /* Initialize the LWLA. This downloads a bitstream into the FPGA * and executes a simple device test sequence. */ SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi) { struct dev_context *devc; int ret; uint32_t value; devc = sdi->priv; /* Force reload of bitstream */ devc->cur_clock_config = CONF_CLOCK_NONE; ret = lwla_set_clock_config(sdi); if (ret != SR_OK) return ret; ret = lwla_write_reg(sdi->conn, REG_CMD_CTRL2, 100); if (ret != SR_OK) return ret; ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL1, &value); if (ret != SR_OK) return ret; sr_dbg("Received test word 0x%08X back.", value); if (value != 0x12345678) return SR_ERR; ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL4, &value); if (ret != SR_OK) return ret; sr_dbg("Received test word 0x%08X back.", value); if (value != 0x12345678) return SR_ERR; ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL3, &value); if (ret != SR_OK) return ret; sr_dbg("Received test word 0x%08X back.", value); if (value != 0x87654321) return SR_ERR; return ret; } SR_PRIV int lwla_convert_trigger(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_trigger *trigger; struct sr_trigger_stage *stage; struct sr_trigger_match *match; const GSList *l, *m; uint64_t channel_index; devc = sdi->priv; devc->trigger_mask = 0; devc->trigger_values = 0; devc->trigger_edge_mask = 0; if (!(trigger = sr_session_trigger_get())) return SR_OK; if (g_slist_length(trigger->stages) > 1) { sr_err("This device only supports 1 trigger stage."); return SR_ERR; } for (l = trigger->stages; l; l = l->next) { stage = l->data; for (m = stage->matches; m; m = m->next) { match = m->data; if (!match->channel->enabled) /* Ignore disabled channels with a trigger. */ continue; channel_index = 1 << match->channel->index; devc->trigger_mask |= channel_index; switch (match->match) { case SR_TRIGGER_ONE: devc->trigger_values |= channel_index; break; case SR_TRIGGER_RISING: devc->trigger_values |= channel_index; /* Fall through for edge mask. */ case SR_TRIGGER_FALLING: devc->trigger_edge_mask |= channel_index; break; } } } return SR_OK; } /* Select the LWLA clock configuration. If the clock source changed from * the previous setting, this will download a new bitstream to the FPGA. */ SR_PRIV int lwla_set_clock_config(const struct sr_dev_inst *sdi) { struct dev_context *devc; int ret; enum clock_config choice; devc = sdi->priv; if (sdi->status == SR_ST_INACTIVE) choice = CONF_CLOCK_NONE; else if (devc->cfg_clock_source == CLOCK_INTERNAL) choice = CONF_CLOCK_INT; else if (devc->cfg_clock_edge == EDGE_POSITIVE) choice = CONF_CLOCK_EXT_RISE; else choice = CONF_CLOCK_EXT_FALL; if (choice != devc->cur_clock_config) { devc->cur_clock_config = CONF_CLOCK_NONE; ret = lwla_send_bitstream(sdi->conn, bitstream_map[choice]); if (ret == SR_OK) devc->cur_clock_config = choice; return ret; } return SR_OK; } /* Configure the LWLA in preparation for an acquisition session. */ SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_usb_dev_inst *usb; struct acquisition_state *acq; struct regval_pair regvals[7]; int ret; devc = sdi->priv; usb = sdi->conn; acq = devc->acquisition; if (devc->limit_msec > 0) { acq->duration_max = devc->limit_msec; sr_info("Acquisition time limit %" PRIu64 " ms.", devc->limit_msec); } else acq->duration_max = MAX_LIMIT_MSEC; if (devc->limit_samples > 0) { acq->samples_max = devc->limit_samples; sr_info("Acquisition sample count limit %" PRIu64 ".", devc->limit_samples); } else acq->samples_max = MAX_LIMIT_SAMPLES; if (devc->cfg_clock_source == CLOCK_INTERNAL) { sr_info("Internal clock, samplerate %" PRIu64 ".", devc->samplerate); if (devc->samplerate == 0) return SR_ERR_BUG; /* At 125 MHz, the clock divider is bypassed. */ acq->bypass_clockdiv = (devc->samplerate > SR_MHZ(100)); /* If only one of the limits is set, derive the other one. */ if (devc->limit_msec == 0 && devc->limit_samples > 0) acq->duration_max = devc->limit_samples * 1000 / devc->samplerate + 1; else if (devc->limit_samples == 0 && devc->limit_msec > 0) acq->samples_max = devc->limit_msec * devc->samplerate / 1000; } else { acq->bypass_clockdiv = TRUE; if (devc->cfg_clock_edge == EDGE_NEGATIVE) sr_info("External clock, falling edge."); else sr_info("External clock, rising edge."); } regvals[0].reg = REG_MEM_CTRL2; regvals[0].val = 2; regvals[1].reg = REG_MEM_CTRL2; regvals[1].val = 1; regvals[2].reg = REG_CMD_CTRL2; regvals[2].val = 10; regvals[3].reg = REG_CMD_CTRL3; regvals[3].val = 0x74; regvals[4].reg = REG_CMD_CTRL4; regvals[4].val = 0; regvals[5].reg = REG_CMD_CTRL1; regvals[5].val = 0; regvals[6].reg = REG_DIV_BYPASS; regvals[6].val = acq->bypass_clockdiv; ret = lwla_write_regs(usb, regvals, G_N_ELEMENTS(regvals)); if (ret != SR_OK) return ret; return capture_setup(sdi); } /* Start the capture operation on the LWLA device. Beginning with this * function, all USB transfers will be asynchronous until the end of the * acquisition session. */ SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_usb_dev_inst *usb; struct acquisition_state *acq; struct regval_pair *regvals; devc = sdi->priv; usb = sdi->conn; acq = devc->acquisition; acq->duration_now = 0; acq->mem_addr_fill = 0; acq->capture_flags = 0; libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND, (unsigned char *)acq->xfer_buf_out, 0, &receive_transfer_out, (struct sr_dev_inst *)sdi, USB_TIMEOUT); libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY, (unsigned char *)acq->xfer_buf_in, sizeof acq->xfer_buf_in, &receive_transfer_in, (struct sr_dev_inst *)sdi, USB_TIMEOUT); regvals = devc->reg_write_seq; regvals[0].reg = REG_CMD_CTRL2; regvals[0].val = 10; regvals[1].reg = REG_CMD_CTRL3; regvals[1].val = 1; regvals[2].reg = REG_CMD_CTRL4; regvals[2].val = 0; regvals[3].reg = REG_CMD_CTRL1; regvals[3].val = 0; devc->reg_write_pos = 0; devc->reg_write_len = 4; devc->state = STATE_START_CAPTURE; return issue_next_write_reg(sdi); } /* Allocate an acquisition state object. */ SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void) { struct acquisition_state *acq; acq = g_try_new0(struct acquisition_state, 1); if (!acq) { sr_err("Acquisition state malloc failed."); return NULL; } acq->xfer_in = libusb_alloc_transfer(0); if (!acq->xfer_in) { sr_err("Transfer malloc failed."); g_free(acq); return NULL; } acq->xfer_out = libusb_alloc_transfer(0); if (!acq->xfer_out) { sr_err("Transfer malloc failed."); libusb_free_transfer(acq->xfer_in); g_free(acq); return NULL; } return acq; } /* Deallocate an acquisition state object. */ SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq) { if (acq) { libusb_free_transfer(acq->xfer_out); libusb_free_transfer(acq->xfer_in); g_free(acq); } } /* USB I/O source callback. */ SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data) { struct sr_dev_inst *sdi; struct dev_context *devc; struct drv_context *drvc; struct timeval tv; int ret; (void)fd; sdi = cb_data; devc = sdi->priv; drvc = sdi->driver->priv; if (!devc || !drvc) return FALSE; /* No timeout: return immediately. */ tv.tv_sec = 0; tv.tv_usec = 0; ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx, &tv, NULL); if (ret != 0) sr_err("Event handling failed: %s.", libusb_error_name(ret)); /* If no event flags are set the timeout must have expired. */ if (revents == 0 && devc->state == STATE_STATUS_WAIT) { if (sdi->status == SR_ST_STOPPING) issue_stop_capture(sdi); else request_capture_status(sdi); } /* Check if an error occurred on a transfer. */ if (devc->transfer_error) end_acquisition(sdi); return TRUE; }