/* * This file is part of the sigrok project. * * Copyright (C) 2012 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include "config.h" #include "libsigrok.h" #include "libsigrok-internal.h" #include struct context { int num_enabled_probes; GPtrArray *probelist; GString *out; }; static int init(struct sr_output *o) { struct context *ctx; struct sr_probe *probe; GSList *l; sr_spew("output/analog: initializing"); if (!o || !o->sdi) return SR_ERR_ARG; if (!(ctx = g_try_malloc0(sizeof(struct context)))) return SR_ERR_MALLOC; o->internal = ctx; /* Get the number of probes and their names. */ ctx->probelist = g_ptr_array_new(); for (l = o->sdi->probes; l; l = l->next) { probe = l->data; if (!probe || !probe->enabled) continue; g_ptr_array_add(ctx->probelist, probe->name); ctx->num_enabled_probes++; } ctx->out = g_string_sized_new(512); return SR_OK; } static void si_printf(float value, GString *out, char *unitstr) { if (value > 1000000000L) g_string_append_printf(out, "%f G%s", value / 1000000000L, unitstr); else if (value > 1000000) g_string_append_printf(out, "%f M%s", value / 1000000, unitstr); else if (value > 1000) g_string_append_printf(out, "%f k%s", value / 1000, unitstr); else if (value < 0.000000000001) g_string_append_printf(out, "%f p%s", value * 1000000000000, unitstr); else if (value < 0.000000001) g_string_append_printf(out, "%f n%s", value * 1000000000, unitstr); else if (value < 0.000001) g_string_append_printf(out, "%f u%s", value * 1000000, unitstr); else if (value < 0.001) g_string_append_printf(out, "%f m%s", value * 1000, unitstr); else g_string_append_printf(out, "%f %s", value, unitstr); } static void fancyprint(int unit, int mqflags, float value, GString *out) { switch (unit) { case SR_UNIT_VOLT: si_printf(value, out, "V"); break; case SR_UNIT_AMPERE: si_printf(value, out, "A"); break; case SR_UNIT_OHM: si_printf(value, out, ""); g_string_append_unichar(out, 0x2126); break; case SR_UNIT_FARAD: si_printf(value, out, "F"); break; case SR_UNIT_KELVIN: si_printf(value, out, "K"); break; case SR_UNIT_CELSIUS: si_printf(value, out, ""); g_string_append_unichar(out, 0x00b0); g_string_append_c(out, 'C'); break; case SR_UNIT_FAHRENHEIT: si_printf(value, out, ""); g_string_append_unichar(out, 0x00b0); g_string_append_c(out, 'F'); break; case SR_UNIT_HERTZ: si_printf(value, out, "Hz"); break; case SR_UNIT_PERCENTAGE: g_string_append_printf(out, "%f%%", value); break; case SR_UNIT_BOOLEAN: if (value > 0) g_string_append_printf(out, "TRUE"); else g_string_append_printf(out, "FALSE"); break; case SR_UNIT_SECOND: si_printf(value, out, "s"); break; case SR_UNIT_SIEMENS: si_printf(value, out, "S"); break; } if (mqflags & SR_MQFLAG_AC) g_string_append_printf(out, " AC"); else if (mqflags & SR_MQFLAG_DC) g_string_append_printf(out, " DC"); g_string_append_c(out, '\n'); } static GString *recv(struct sr_output *o, const struct sr_dev_inst *sdi, struct sr_datafeed_packet *packet) { struct sr_datafeed_analog *analog; struct context *ctx; float *fdata; int i, j; if (!o || !o->sdi) return NULL; ctx = o->internal; g_string_set_size(ctx->out, 0); switch (packet->type) { case SR_DF_HEADER: break; case SR_DF_FRAME_BEGIN: g_string_append_printf(ctx->out, "FRAME-BEGIN\n"); break; case SR_DF_FRAME_END: g_string_append_printf(ctx->out, "FRAME-END\n"); break; case SR_DF_ANALOG: analog = packet->payload; fdata = (float *)analog->data; for (i = 0; i < analog->num_samples; i++) { for (j = 0; j < ctx->num_enabled_probes; j++) { g_string_append_printf(ctx->out, "%s: ", (char *)g_ptr_array_index(ctx->probelist, j)); fancyprint(analog->unit, analog->mqflags, fdata[i + j], ctx->out); } } break; } return ctx->out; } static int cleanup(struct sr_output *o) { struct context *ctx; if (!o || !o->sdi) return SR_ERR_ARG; ctx = o->internal; g_ptr_array_free(ctx->probelist, 1); g_string_free(ctx->out, 1); g_free(ctx); o->internal = NULL; return SR_OK; } SR_PRIV struct sr_output_format output_analog = { .id = "analog", .description = "Analog data", .df_type = SR_DF_ANALOG, .init = init, .recv = recv, .cleanup = cleanup };