/* * This file is part of the libsigrok project. * * Copyright (C) 2013 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include "config.h" /* Needed for HAVE_LIBUSB_1_0 and others. */ #include #include "libsigrok-internal.h" /** @cond PRIVATE */ #define LOG_PREFIX "hwdriver" /** @endcond */ /** * @file * * Hardware driver handling in libsigrok. */ /** * @defgroup grp_driver Hardware drivers * * Hardware driver handling in libsigrok. * * @{ */ /* Please use the same order/grouping as in enum sr_configkey (libsigrok.h). */ static struct sr_key_info sr_key_info_config[] = { /* Device classes */ {SR_CONF_LOGIC_ANALYZER, SR_T_STRING, NULL, "Logic analyzer", NULL}, {SR_CONF_OSCILLOSCOPE, SR_T_STRING, NULL, "Oscilloscope", NULL}, {SR_CONF_MULTIMETER, SR_T_STRING, NULL, "Multimeter", NULL}, {SR_CONF_DEMO_DEV, SR_T_STRING, NULL, "Demo device", NULL}, {SR_CONF_SOUNDLEVELMETER, SR_T_STRING, NULL, "Sound level meter", NULL}, {SR_CONF_THERMOMETER, SR_T_STRING, NULL, "Thermometer", NULL}, {SR_CONF_HYGROMETER, SR_T_STRING, NULL, "Hygrometer", NULL}, {SR_CONF_ENERGYMETER, SR_T_STRING, NULL, "Energy meter", NULL}, {SR_CONF_DEMODULATOR, SR_T_STRING, NULL, "Demodulator", NULL}, {SR_CONF_POWER_SUPPLY, SR_T_STRING, NULL, "Power supply", NULL}, {SR_CONF_LCRMETER, SR_T_STRING, NULL, "LCR meter", NULL}, {SR_CONF_ELECTRONIC_LOAD, SR_T_STRING, NULL, "Electronic load", NULL}, {SR_CONF_SCALE, SR_T_STRING, NULL, "Scale", NULL}, /* Driver scan options */ {SR_CONF_CONN, SR_T_STRING, "conn", "Connection", NULL}, {SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm", "Serial communication", NULL}, {SR_CONF_MODBUSADDR, SR_T_UINT64, "modbusaddr", "Modbus slave address", NULL}, /* Device (or channel group) configuration */ {SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate", "Sample rate", NULL}, {SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio", "Pre-trigger capture ratio", NULL}, {SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern", "Pattern", NULL}, {SR_CONF_RLE, SR_T_BOOL, "rle", "Run length encoding", NULL}, {SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope", "Trigger slope", NULL}, {SR_CONF_AVERAGING, SR_T_BOOL, "averaging", "Averaging", NULL}, {SR_CONF_AVG_SAMPLES, SR_T_UINT64, "avg_samples", "Number of samples to average over", NULL}, {SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource", "Trigger source", NULL}, {SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos", "Horizontal trigger position", NULL}, {SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize", "Buffer size", NULL}, {SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase", "Time base", NULL}, {SR_CONF_FILTER, SR_T_BOOL, "filter", "Filter", NULL}, {SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv", "Volts/div", NULL}, {SR_CONF_COUPLING, SR_T_STRING, "coupling", "Coupling", NULL}, {SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch", "Trigger matches", NULL}, {SR_CONF_SAMPLE_INTERVAL, SR_T_UINT64, "sample_interval", "Sample interval", NULL}, {SR_CONF_NUM_HDIV, SR_T_INT32, "num_hdiv", "Number of horizontal divisions", NULL}, {SR_CONF_NUM_VDIV, SR_T_INT32, "num_vdiv", "Number of vertical divisions", NULL}, {SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq", "Sound pressure level frequency weighting", NULL}, {SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time", "Sound pressure level time weighting", NULL}, {SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range", "Sound pressure level measurement range", NULL}, {SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max", "Hold max", NULL}, {SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min", "Hold min", NULL}, {SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold", "Voltage threshold", NULL }, {SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock", "External clock mode", NULL}, {SR_CONF_SWAP, SR_T_BOOL, "swap", "Swap channel order", NULL}, {SR_CONF_CENTER_FREQUENCY, SR_T_UINT64, "center_frequency", "Center frequency", NULL}, {SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels", "Number of logic channels", NULL}, {SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels", "Number of analog channels", NULL}, {SR_CONF_VOLTAGE, SR_T_FLOAT, "voltage", "Current voltage", NULL}, {SR_CONF_VOLTAGE_TARGET, SR_T_FLOAT, "voltage_target", "Voltage target", NULL}, {SR_CONF_CURRENT, SR_T_FLOAT, "current", "Current current", NULL}, {SR_CONF_CURRENT_LIMIT, SR_T_FLOAT, "current_limit", "Current limit", NULL}, {SR_CONF_ENABLED, SR_T_BOOL, "enabled", "Channel enabled", NULL}, {SR_CONF_CHANNEL_CONFIG, SR_T_STRING, "channel_config", "Channel modes", NULL}, {SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED, SR_T_BOOL, "ovp_enabled", "Over-voltage protection enabled", NULL}, {SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE, SR_T_BOOL, "ovp_active", "Over-voltage protection active", NULL}, {SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD, SR_T_FLOAT, "ovp_threshold", "Over-voltage protection threshold", NULL}, {SR_CONF_OVER_CURRENT_PROTECTION_ENABLED, SR_T_BOOL, "ocp_enabled", "Over-current protection enabled", NULL}, {SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE, SR_T_BOOL, "ocp_active", "Over-current protection active", NULL}, {SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD, SR_T_FLOAT, "ocp_threshold", "Over-current protection threshold", NULL}, {SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge", "Clock edge", NULL}, {SR_CONF_AMPLITUDE, SR_T_FLOAT, "amplitude", "Amplitude", NULL}, {SR_CONF_REGULATION, SR_T_STRING, "regulation", "Channel regulation", NULL}, {SR_CONF_OVER_TEMPERATURE_PROTECTION, SR_T_BOOL, "otp", "Over-temperature protection", NULL}, {SR_CONF_OUTPUT_FREQUENCY, SR_T_FLOAT, "output_frequency", "Output frequency", NULL}, {SR_CONF_OUTPUT_FREQUENCY_TARGET, SR_T_FLOAT, "output_frequency_target", "Output frequency target", NULL}, {SR_CONF_MEASURED_QUANTITY, SR_T_MQ, "measured_quantity", "Measured quantity", NULL}, {SR_CONF_MEASURED_2ND_QUANTITY, SR_T_STRING, "measured_2nd_quantity", "Measured secondary quantity", NULL}, {SR_CONF_EQUIV_CIRCUIT_MODEL, SR_T_STRING, "equiv_circuit_model", "Equivalent circuit model", NULL}, {SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE, SR_T_BOOL, "otp_active", "Over-temperature protection active", NULL}, /* Special stuff */ {SR_CONF_SCAN_OPTIONS, SR_T_STRING, "scan_options", "Scan options", NULL}, {SR_CONF_DEVICE_OPTIONS, SR_T_STRING, "device_options", "Device options", NULL}, {SR_CONF_SESSIONFILE, SR_T_STRING, "sessionfile", "Session file", NULL}, {SR_CONF_CAPTUREFILE, SR_T_STRING, "capturefile", "Capture file", NULL}, {SR_CONF_CAPTURE_UNITSIZE, SR_T_UINT64, "capture_unitsize", "Capture unitsize", NULL}, {SR_CONF_POWER_OFF, SR_T_BOOL, "power_off", "Power off", NULL}, {SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source", "Data source", NULL}, {SR_CONF_PROBE_FACTOR, SR_T_UINT64, "probe_factor", "Probe factor", NULL}, /* Acquisition modes, sample limiting */ {SR_CONF_LIMIT_MSEC, SR_T_UINT64, "limit_time", "Time limit", NULL}, {SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples", "Sample limit", NULL}, {SR_CONF_LIMIT_FRAMES, SR_T_UINT64, "limit_frames", "Frame limit", NULL}, {SR_CONF_CONTINUOUS, SR_T_UINT64, "continuous", "Continuous sampling", NULL}, {SR_CONF_DATALOG, SR_T_BOOL, "datalog", "Datalog", NULL}, {SR_CONF_DEVICE_MODE, SR_T_STRING, "device_mode", "Device mode", NULL}, {SR_CONF_TEST_MODE, SR_T_STRING, "test_mode", "Test mode", NULL}, {0, 0, NULL, NULL, NULL}, }; /* Please use the same order as in enum sr_mq (libsigrok.h). */ static struct sr_key_info sr_key_info_mq[] = { {SR_MQ_VOLTAGE, 0, "voltage", "Voltage", NULL}, {SR_MQ_CURRENT, 0, "current", "Current", NULL}, {SR_MQ_RESISTANCE, 0, "resistance", "Resistance", NULL}, {SR_MQ_CAPACITANCE, 0, "capacitance", "Capacitance", NULL}, {SR_MQ_TEMPERATURE, 0, "temperature", "Temperature", NULL}, {SR_MQ_FREQUENCY, 0, "frequency", "Frequency", NULL}, {SR_MQ_DUTY_CYCLE, 0, "duty_cycle", "Duty cycle", NULL}, {SR_MQ_CONTINUITY, 0, "continuity", "Continuity", NULL}, {SR_MQ_PULSE_WIDTH, 0, "pulse_width", "Pulse width", NULL}, {SR_MQ_CONDUCTANCE, 0, "conductance", "Conductance", NULL}, {SR_MQ_POWER, 0, "power", "Power", NULL}, {SR_MQ_GAIN, 0, "gain", "Gain", NULL}, {SR_MQ_SOUND_PRESSURE_LEVEL, 0, "spl", "Sound pressure level", NULL}, {SR_MQ_CARBON_MONOXIDE, 0, "co", "Carbon monoxide", NULL}, {SR_MQ_RELATIVE_HUMIDITY, 0, "rh", "Relative humidity", NULL}, {SR_MQ_TIME, 0, "time", "Time", NULL}, {SR_MQ_WIND_SPEED, 0, "wind_speed", "Wind speed", NULL}, {SR_MQ_PRESSURE, 0, "pressure", "Pressure", NULL}, {SR_MQ_PARALLEL_INDUCTANCE, 0, "parallel_inductance", "Parallel inductance", NULL}, {SR_MQ_PARALLEL_CAPACITANCE, 0, "parallel_capacitance", "Parallel capacitance", NULL}, {SR_MQ_PARALLEL_RESISTANCE, 0, "parallel_resistance", "Parallel resistance", NULL}, {SR_MQ_SERIES_INDUCTANCE, 0, "series_inductance", "Series inductance", NULL}, {SR_MQ_SERIES_CAPACITANCE, 0, "series_capacitance", "Series capacitance", NULL}, {SR_MQ_SERIES_RESISTANCE, 0, "series_resistance", "Series resistance", NULL}, {SR_MQ_DISSIPATION_FACTOR, 0, "dissipation_factor", "Dissipation factor", NULL}, {SR_MQ_QUALITY_FACTOR, 0, "quality_factor", "Quality factor", NULL}, {SR_MQ_PHASE_ANGLE, 0, "phase_angle", "Phase angle", NULL}, {SR_MQ_DIFFERENCE, 0, "difference", "Difference", NULL}, {SR_MQ_COUNT, 0, "count", "Count", NULL}, {SR_MQ_POWER_FACTOR, 0, "power_factor", "Power factor", NULL}, {SR_MQ_APPARENT_POWER, 0, "apparent_power", "Apparent power", NULL}, {SR_MQ_MASS, 0, "mass", "Mass", NULL}, ALL_ZERO }; /* Please use the same order as in enum sr_mqflag (libsigrok.h). */ static struct sr_key_info sr_key_info_mqflag[] = { {SR_MQFLAG_AC, 0, "ac", "AC", NULL}, {SR_MQFLAG_DC, 0, "dc", "DC", NULL}, {SR_MQFLAG_RMS, 0, "rms", "RMS", NULL}, {SR_MQFLAG_DIODE, 0, "diode", "Diode", NULL}, {SR_MQFLAG_HOLD, 0, "hold", "Hold", NULL}, {SR_MQFLAG_MAX, 0, "max", "Max", NULL}, {SR_MQFLAG_MIN, 0, "min", "Min", NULL}, {SR_MQFLAG_AUTORANGE, 0, "auto_range", "Auto range", NULL}, {SR_MQFLAG_RELATIVE, 0, "relative", "Relative", NULL}, {SR_MQFLAG_SPL_FREQ_WEIGHT_A, 0, "spl_freq_weight_a", "Frequency weighted (A)", NULL}, {SR_MQFLAG_SPL_FREQ_WEIGHT_C, 0, "spl_freq_weight_c", "Frequency weighted (C)", NULL}, {SR_MQFLAG_SPL_FREQ_WEIGHT_Z, 0, "spl_freq_weight_z", "Frequency weighted (Z)", NULL}, {SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, 0, "spl_freq_weight_flat", "Frequency weighted (flat)", NULL}, {SR_MQFLAG_SPL_TIME_WEIGHT_S, 0, "spl_time_weight_s", "Time weighted (S)", NULL}, {SR_MQFLAG_SPL_TIME_WEIGHT_F, 0, "spl_time_weight_f", "Time weighted (F)", NULL}, {SR_MQFLAG_SPL_LAT, 0, "spl_time_average", "Time-averaged (LEQ)", NULL}, {SR_MQFLAG_SPL_PCT_OVER_ALARM, 0, "spl_pct_over_alarm", "Percentage over alarm", NULL}, {SR_MQFLAG_DURATION, 0, "duration", "Duration", NULL}, {SR_MQFLAG_AVG, 0, "average", "Average", NULL}, {SR_MQFLAG_REFERENCE, 0, "reference", "Reference", NULL}, {SR_MQFLAG_UNSTABLE, 0, "unstable", "Unstable", NULL}, ALL_ZERO }; /* This must handle all the keys from enum sr_datatype (libsigrok.h). */ SR_PRIV const GVariantType *sr_variant_type_get(int datatype) { switch (datatype) { case SR_T_INT32: return G_VARIANT_TYPE_INT32; case SR_T_UINT64: return G_VARIANT_TYPE_UINT64; case SR_T_STRING: return G_VARIANT_TYPE_STRING; case SR_T_BOOL: return G_VARIANT_TYPE_BOOLEAN; case SR_T_FLOAT: return G_VARIANT_TYPE_DOUBLE; case SR_T_RATIONAL_PERIOD: case SR_T_RATIONAL_VOLT: case SR_T_UINT64_RANGE: case SR_T_DOUBLE_RANGE: return G_VARIANT_TYPE_TUPLE; case SR_T_KEYVALUE: return G_VARIANT_TYPE_DICTIONARY; case SR_T_MQ: return G_VARIANT_TYPE_TUPLE; default: return NULL; } } SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *value) { const struct sr_key_info *info; const GVariantType *type, *expected; char *expected_string, *type_string; info = sr_key_info_get(SR_KEY_CONFIG, key); if (!info) return SR_OK; expected = sr_variant_type_get(info->datatype); type = g_variant_get_type(value); if (!g_variant_type_equal(type, expected) && !g_variant_type_is_subtype_of(type, expected)) { expected_string = g_variant_type_dup_string(expected); type_string = g_variant_type_dup_string(type); sr_err("Wrong variant type for key '%s': expected '%s', got '%s'", info->name, expected_string, type_string); g_free(expected_string); g_free(type_string); return SR_ERR_ARG; } return SR_OK; } /** * Return the list of supported hardware drivers. * * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL. * * @retval NULL The ctx argument was NULL, or there are no supported drivers. * @retval Other Pointer to the NULL-terminated list of hardware drivers. * The user should NOT g_free() this list, sr_exit() will do that. * * @since 0.4.0 */ SR_API struct sr_dev_driver **sr_driver_list(const struct sr_context *ctx) { if (!ctx) return NULL; return ctx->driver_list; } /** * Initialize a hardware driver. * * This usually involves memory allocations and variable initializations * within the driver, but _not_ scanning for attached devices. * The API call sr_driver_scan() is used for that. * * @param ctx A libsigrok context object allocated by a previous call to * sr_init(). Must not be NULL. * @param driver The driver to initialize. This must be a pointer to one of * the entries returned by sr_driver_list(). Must not be NULL. * * @retval SR_OK Success * @retval SR_ERR_ARG Invalid parameter(s). * @retval SR_ERR_BUG Internal errors. * @retval other Another negative error code upon other errors. * * @since 0.2.0 */ SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver) { int ret; if (!ctx) { sr_err("Invalid libsigrok context, can't initialize."); return SR_ERR_ARG; } if (!driver) { sr_err("Invalid driver, can't initialize."); return SR_ERR_ARG; } sr_spew("Initializing driver '%s'.", driver->name); if ((ret = driver->init(driver, ctx)) < 0) sr_err("Failed to initialize the driver: %d.", ret); return ret; } static int check_options(struct sr_dev_driver *driver, GSList *options, uint32_t optlist_key, struct sr_dev_inst *sdi, struct sr_channel_group *cg) { struct sr_config *src; const struct sr_key_info *srci; GVariant *gvar_opts; GSList *l; const uint32_t *opts; gsize num_opts, i; int ret; if (sr_config_list(driver, sdi, cg, optlist_key, &gvar_opts) != SR_OK) { /* Driver publishes no options for this optlist. */ return SR_ERR; } ret = SR_OK; opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t)); for (l = options; l; l = l->next) { src = l->data; for (i = 0; i < num_opts; i++) { if (opts[i] == src->key) break; } if (i == num_opts) { if (!(srci = sr_key_info_get(SR_KEY_CONFIG, src->key))) /* Shouldn't happen. */ sr_err("Invalid option %d.", src->key); else sr_err("Invalid option '%s'.", srci->id); ret = SR_ERR_ARG; break; } if (sr_variant_type_check(src->key, src->data) != SR_OK) { ret = SR_ERR_ARG; break; } } g_variant_unref(gvar_opts); return ret; } /** * Tell a hardware driver to scan for devices. * * In addition to the detection, the devices that are found are also * initialized automatically. On some devices, this involves a firmware upload, * or other such measures. * * The order in which the system is scanned for devices is not specified. The * caller should not assume or rely on any specific order. * * Before calling sr_driver_scan(), the user must have previously initialized * the driver by calling sr_driver_init(). * * @param driver The driver that should scan. This must be a pointer to one of * the entries returned by sr_driver_list(). Must not be NULL. * @param options A list of 'struct sr_hwopt' options to pass to the driver's * scanner. Can be NULL/empty. * * @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were * found (or errors were encountered). This list must be freed by the * caller using g_slist_free(), but without freeing the data pointed * to in the list. * * @since 0.2.0 */ SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options) { GSList *l; if (!driver) { sr_err("Invalid driver, can't scan for devices."); return NULL; } if (!driver->context) { sr_err("Driver not initialized, can't scan for devices."); return NULL; } if (options) { if (check_options(driver, options, SR_CONF_SCAN_OPTIONS, NULL, NULL) != SR_OK) return NULL; } l = driver->scan(driver, options); sr_spew("Scan of '%s' found %d devices.", driver->name, g_slist_length(l)); return l; } /** * Call driver cleanup function for all drivers. * * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL. * * @private */ SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx) { int i; struct sr_dev_driver **drivers; if (!ctx) return; drivers = sr_driver_list(ctx); for (i = 0; drivers[i]; i++) { if (drivers[i]->cleanup) drivers[i]->cleanup(drivers[i]); drivers[i]->context = NULL; } } /** Allocate struct sr_config. * A floating reference can be passed in for data. * @private */ SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data) { struct sr_config *src; src = g_malloc0(sizeof(struct sr_config)); src->key = key; src->data = g_variant_ref_sink(data); return src; } /** Free struct sr_config. * @private */ SR_PRIV void sr_config_free(struct sr_config *src) { if (!src || !src->data) { sr_err("%s: invalid data!", __func__); return; } g_variant_unref(src->data); g_free(src); } static void log_key(const struct sr_dev_inst *sdi, const struct sr_channel_group *cg, uint32_t key, int op, GVariant *data) { const char *opstr; const struct sr_key_info *srci; /* Don't log SR_CONF_DEVICE_OPTIONS, it's verbose and not too useful. */ if (key == SR_CONF_DEVICE_OPTIONS) return; opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list"; srci = sr_key_info_get(SR_KEY_CONFIG, key); sr_spew("sr_config_%s(): key %d (%s) sdi %p cg %s -> %s", opstr, key, srci ? srci->id : "NULL", sdi, cg ? cg->name : "NULL", data ? g_variant_print(data, TRUE) : "NULL"); } static int check_key(const struct sr_dev_driver *driver, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg, uint32_t key, int op, GVariant *data) { const struct sr_key_info *srci; gsize num_opts, i; GVariant *gvar_opts; const uint32_t *opts; uint32_t pub_opt; char *suffix, *opstr; if (sdi && cg) suffix = " for this device and channel group"; else if (sdi) suffix = " for this device"; else suffix = ""; if (!(srci = sr_key_info_get(SR_KEY_CONFIG, key))) { sr_err("Invalid key %d.", key); return SR_ERR_ARG; } opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list"; switch (key) { case SR_CONF_LIMIT_MSEC: case SR_CONF_LIMIT_SAMPLES: case SR_CONF_SAMPLERATE: /* Setting any of these to 0 is not useful. */ if (op != SR_CONF_SET || !data) break; if (g_variant_get_uint64(data) == 0) { sr_err("Cannot set '%s' to 0.", srci->id); return SR_ERR_ARG; } break; } if (sr_config_list(driver, sdi, cg, SR_CONF_DEVICE_OPTIONS, &gvar_opts) != SR_OK) { /* Driver publishes no options. */ sr_err("No options available%s.", suffix); return SR_ERR_ARG; } opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t)); pub_opt = 0; for (i = 0; i < num_opts; i++) { if ((opts[i] & SR_CONF_MASK) == key) { pub_opt = opts[i]; break; } } g_variant_unref(gvar_opts); if (!pub_opt) { sr_err("Option '%s' not available%s.", srci->id, suffix); return SR_ERR_ARG; } if (!(pub_opt & op)) { sr_err("Option '%s' not available to %s%s.", srci->id, opstr, suffix); return SR_ERR_ARG; } return SR_OK; } /** * Query value of a configuration key at the given driver or device instance. * * @param[in] driver The sr_dev_driver struct to query. * @param[in] sdi (optional) If the key is specific to a device, this must * contain a pointer to the struct sr_dev_inst to be checked. * Otherwise it must be NULL. * @param[in] cg The channel group on the device for which to list the * values, or NULL. * @param[in] key The configuration key (SR_CONF_*). * @param[in,out] data Pointer to a GVariant where the value will be stored. * Must not be NULL. The caller is given ownership of the GVariant * and must thus decrease the refcount after use. However if * this function returns an error code, the field should be * considered unused, and should not be unreferenced. * * @retval SR_OK Success. * @retval SR_ERR Error. * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be * interpreted as an error by the caller; merely as an indication * that it's not applicable. * * @since 0.3.0 */ SR_API int sr_config_get(const struct sr_dev_driver *driver, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg, uint32_t key, GVariant **data) { int ret; if (!driver || !data) return SR_ERR; if (!driver->config_get) return SR_ERR_ARG; if (check_key(driver, sdi, cg, key, SR_CONF_GET, NULL) != SR_OK) return SR_ERR_ARG; if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) { log_key(sdi, cg, key, SR_CONF_GET, *data); /* Got a floating reference from the driver. Sink it here, * caller will need to unref when done with it. */ g_variant_ref_sink(*data); } return ret; } /** * Set value of a configuration key in a device instance. * * @param[in] sdi The device instance. * @param[in] cg The channel group on the device for which to list the * values, or NULL. * @param[in] key The configuration key (SR_CONF_*). * @param data The new value for the key, as a GVariant with GVariantType * appropriate to that key. A floating reference can be passed * in; its refcount will be sunk and unreferenced after use. * * @retval SR_OK Success. * @retval SR_ERR Error. * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be * interpreted as an error by the caller; merely as an indication * that it's not applicable. * * @since 0.3.0 */ SR_API int sr_config_set(const struct sr_dev_inst *sdi, const struct sr_channel_group *cg, uint32_t key, GVariant *data) { int ret; g_variant_ref_sink(data); if (!sdi || !sdi->driver || !data) ret = SR_ERR; else if (!sdi->driver->config_set) ret = SR_ERR_ARG; else if (check_key(sdi->driver, sdi, cg, key, SR_CONF_SET, data) != SR_OK) return SR_ERR_ARG; else if ((ret = sr_variant_type_check(key, data)) == SR_OK) { log_key(sdi, cg, key, SR_CONF_SET, data); ret = sdi->driver->config_set(key, data, sdi, cg); } g_variant_unref(data); return ret; } /** * Apply configuration settings to the device hardware. * * @param sdi The device instance. * * @return SR_OK upon success or SR_ERR in case of error. * * @since 0.3.0 */ SR_API int sr_config_commit(const struct sr_dev_inst *sdi) { int ret; if (!sdi || !sdi->driver) ret = SR_ERR; else if (!sdi->driver->config_commit) ret = SR_OK; else ret = sdi->driver->config_commit(sdi); return ret; } /** * List all possible values for a configuration key. * * @param[in] driver The sr_dev_driver struct to query. * @param[in] sdi (optional) If the key is specific to a device, this must * contain a pointer to the struct sr_dev_inst to be checked. * @param[in] cg The channel group on the device for which to list the * values, or NULL. * @param[in] key The configuration key (SR_CONF_*). * @param[in,out] data A pointer to a GVariant where the list will be stored. * The caller is given ownership of the GVariant and must thus * unref the GVariant after use. However if this function * returns an error code, the field should be considered * unused, and should not be unreferenced. * * @retval SR_OK Success. * @retval SR_ERR Error. * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be * interpreted as an error by the caller; merely as an indication * that it's not applicable. * * @since 0.3.0 */ SR_API int sr_config_list(const struct sr_dev_driver *driver, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg, uint32_t key, GVariant **data) { int ret; if (!driver || !data) return SR_ERR; else if (!driver->config_list) return SR_ERR_ARG; else if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS) { if (check_key(driver, sdi, cg, key, SR_CONF_LIST, NULL) != SR_OK) return SR_ERR_ARG; } if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK) { log_key(sdi, cg, key, SR_CONF_LIST, *data); g_variant_ref_sink(*data); } return ret; } static struct sr_key_info *get_keytable(int keytype) { struct sr_key_info *table; switch (keytype) { case SR_KEY_CONFIG: table = sr_key_info_config; break; case SR_KEY_MQ: table = sr_key_info_mq; break; case SR_KEY_MQFLAGS: table = sr_key_info_mqflag; break; default: sr_err("Invalid keytype %d", keytype); return NULL; } return table; } /** * Get information about a key, by key. * * @param[in] keytype The namespace the key is in. * @param[in] key The key to find. * * @return A pointer to a struct sr_key_info, or NULL if the key * was not found. * * @since 0.3.0 */ SR_API const struct sr_key_info *sr_key_info_get(int keytype, uint32_t key) { struct sr_key_info *table; int i; if (!(table = get_keytable(keytype))) return NULL; for (i = 0; table[i].key; i++) { if (table[i].key == key) return &table[i]; } return NULL; } /** * Get information about a key, by name. * * @param[in] keytype The namespace the key is in. * @param[in] keyid The key id string. * * @return A pointer to a struct sr_key_info, or NULL if the key * was not found. * * @since 0.2.0 */ SR_API const struct sr_key_info *sr_key_info_name_get(int keytype, const char *keyid) { struct sr_key_info *table; int i; if (!(table = get_keytable(keytype))) return NULL; for (i = 0; table[i].key; i++) { if (!table[i].id) continue; if (!strcmp(table[i].id, keyid)) return &table[i]; } return NULL; } /** @} */