/* * This file is part of the libsigrok project. * * Copyright (C) 2010 Uwe Hermann * Copyright (C) 2011 Olivier Fauchon * Copyright (C) 2012 Alexandru Gagniuc * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #ifdef _WIN32 #include #include #define pipe(fds) _pipe(fds, 4096, _O_BINARY) #endif #include "libsigrok.h" #include "libsigrok-internal.h" #define LOG_PREFIX "demo" #define DEFAULT_NUM_LOGIC_PROBES 8 #define DEFAULT_NUM_ANALOG_PROBES 4 /* The size in bytes of chunks to send through the session bus. */ #define LOGIC_BUFSIZE 4096 /* Size of the analog pattern space per channel. */ #define ANALOG_BUFSIZE 4096 #define ANALOG_AMPLITUDE 25 #define ANALOG_SAMPLES_PER_PERIOD 20 /* Logic patterns we can generate. */ enum { /** * Spells "sigrok" across 8 probes using '0's (with '1's as * "background") when displayed using the 'bits' output format. * The pattern is repeasted every 8 probes, shifted to the right * in time by one bit. */ PATTERN_SIGROK, /** Pseudo-random values on all probes. */ PATTERN_RANDOM, /** * Incrementing number across 8 probes. The pattern is repeasted * every 8 probes, shifted to the right in time by one bit. */ PATTERN_INC, /** All probes have a low logic state. */ PATTERN_ALL_LOW, /** All probes have a high logic state. */ PATTERN_ALL_HIGH, }; /* Analog patterns we can generate. */ enum { /** * Square wave. */ PATTERN_SQUARE, PATTERN_SINE, PATTERN_TRIANGLE, PATTERN_SAWTOOTH, }; static const char *logic_pattern_str[] = { "sigrok", "random", "incremental", "all-low", "all-high", }; static const char *analog_pattern_str[] = { "square", "sine", "triangle", "sawtooth", }; struct analog_gen { int pattern; float pattern_data[ANALOG_BUFSIZE]; unsigned int num_samples; struct sr_datafeed_analog packet; }; /* Private, per-device-instance driver context. */ struct dev_context { int pipe_fds[2]; GIOChannel *channel; uint64_t cur_samplerate; uint64_t limit_samples; uint64_t limit_msec; uint64_t logic_counter; uint64_t analog_counter; int64_t starttime; uint64_t step; /* Logic */ int32_t num_logic_probes; unsigned int logic_unitsize; /* There is only ever one logic probe group, so its pattern goes here. */ uint8_t logic_pattern; unsigned char logic_data[LOGIC_BUFSIZE]; /* Analog */ int32_t num_analog_probes; GSList *analog_probe_groups; }; static const int32_t scanopts[] = { SR_CONF_NUM_LOGIC_PROBES, SR_CONF_NUM_ANALOG_PROBES, }; static const int devopts[] = { SR_CONF_LOGIC_ANALYZER, SR_CONF_DEMO_DEV, SR_CONF_SAMPLERATE, SR_CONF_LIMIT_SAMPLES, SR_CONF_LIMIT_MSEC, }; static const int devopts_pg[] = { SR_CONF_PATTERN_MODE, }; static const uint64_t samplerates[] = { SR_HZ(1), SR_GHZ(1), SR_HZ(1), }; static uint8_t pattern_sigrok[] = { 0x4c, 0x92, 0x92, 0x92, 0x64, 0x00, 0x00, 0x00, 0x82, 0xfe, 0xfe, 0x82, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x82, 0x82, 0x92, 0x74, 0x00, 0x00, 0x00, 0xfe, 0x12, 0x12, 0x32, 0xcc, 0x00, 0x00, 0x00, 0x7c, 0x82, 0x82, 0x82, 0x7c, 0x00, 0x00, 0x00, 0xfe, 0x10, 0x28, 0x44, 0x82, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xbe, 0xbe, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; SR_PRIV struct sr_dev_driver demo_driver_info; static struct sr_dev_driver *di = &demo_driver_info; static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data); static int dev_clear(void) { return std_dev_clear(di, NULL); } static int init(struct sr_context *sr_ctx) { return std_init(sr_ctx, di, LOG_PREFIX); } static void generate_analog_pattern(const struct sr_probe_group *probe_group, uint64_t sample_rate) { struct analog_gen *ag; double t, frequency; float value; unsigned int num_samples, i; int last_end; ag = probe_group->priv; num_samples = ANALOG_BUFSIZE / sizeof(float); sr_dbg("Generating %s pattern for probe group %s", analog_pattern_str[ag->pattern], probe_group->name); switch (ag->pattern) { case PATTERN_SQUARE: value = ANALOG_AMPLITUDE; last_end = 0; for (i = 0; i < num_samples; i++) { if (i % 5 == 0) value = -value; if (i % 10 == 0) last_end = i - 1; ag->pattern_data[i] = value; } ag->num_samples = last_end; break; case PATTERN_SINE: frequency = (double) sample_rate / ANALOG_SAMPLES_PER_PERIOD; /* Make sure the number of samples we put out is an integer * multiple of our period size */ /* FIXME we actually need only one period. A ringbuffer would be * usefull here.*/ while (num_samples % ANALOG_SAMPLES_PER_PERIOD != 0) num_samples--; for (i = 0; i < num_samples; i++) { t = (double) i / (double) sample_rate; ag->pattern_data[i] = ANALOG_AMPLITUDE * sin(2 * M_PI * frequency * t); } ag->num_samples = num_samples; break; case PATTERN_TRIANGLE: frequency = (double) sample_rate / ANALOG_SAMPLES_PER_PERIOD; while (num_samples % ANALOG_SAMPLES_PER_PERIOD != 0) num_samples--; for (i = 0; i < num_samples; i++) { t = (double) i / (double) sample_rate; ag->pattern_data[i] = (2 * ANALOG_AMPLITUDE / M_PI) * asin(sin(2 * M_PI * frequency * t)); } ag->num_samples = num_samples; break; case PATTERN_SAWTOOTH: frequency = (double) sample_rate / ANALOG_SAMPLES_PER_PERIOD; while (num_samples % ANALOG_SAMPLES_PER_PERIOD != 0) num_samples--; for (i = 0; i < num_samples; i++) { t = (double) i / (double) sample_rate; ag->pattern_data[i] = 2 * ANALOG_AMPLITUDE * ((t * frequency) - floor(0.5f + t * frequency)); } ag->num_samples = num_samples; break; } } static GSList *scan(GSList *options) { struct drv_context *drvc; struct dev_context *devc; struct sr_dev_inst *sdi; struct sr_probe *probe; struct sr_probe_group *pg; struct sr_config *src; struct analog_gen *ag; GSList *devices, *l; int num_logic_probes, num_analog_probes, pattern, i; char probe_name[16]; drvc = di->priv; num_logic_probes = DEFAULT_NUM_LOGIC_PROBES; num_analog_probes = DEFAULT_NUM_ANALOG_PROBES; for (l = options; l; l = l->next) { src = l->data; switch (src->key) { case SR_CONF_NUM_LOGIC_PROBES: num_logic_probes = g_variant_get_int32(src->data); break; case SR_CONF_NUM_ANALOG_PROBES: num_analog_probes = g_variant_get_int32(src->data); break; } } devices = NULL; sdi = sr_dev_inst_new(0, SR_ST_ACTIVE, "Demo device", NULL, NULL); if (!sdi) { sr_err("Device instance creation failed."); return NULL; } sdi->driver = di; if (!(devc = g_try_malloc(sizeof(struct dev_context)))) { sr_err("Device context malloc failed."); return NULL; } devc->cur_samplerate = SR_KHZ(200); devc->limit_samples = 0; devc->limit_msec = 0; devc->step = 0; devc->num_logic_probes = num_logic_probes; devc->logic_unitsize = (devc->num_logic_probes + 7) / 8; devc->logic_pattern = PATTERN_SIGROK; devc->num_analog_probes = num_analog_probes; devc->analog_probe_groups = NULL; /* Logic probes, all in one probe group. */ if (!(pg = g_try_malloc(sizeof(struct sr_probe_group)))) return NULL; pg->name = g_strdup("Logic"); pg->probes = NULL; pg->priv = NULL; for (i = 0; i < num_logic_probes; i++) { sprintf(probe_name, "D%d", i); if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE, probe_name))) return NULL; sdi->probes = g_slist_append(sdi->probes, probe); pg->probes = g_slist_append(pg->probes, probe); } sdi->probe_groups = g_slist_append(NULL, pg); /* Analog probes, probe groups and pattern generators. */ pattern = 0; for (i = 0; i < num_analog_probes; i++) { sprintf(probe_name, "A%d", i); if (!(probe = sr_probe_new(i + num_logic_probes, SR_PROBE_ANALOG, TRUE, probe_name))) return NULL; sdi->probes = g_slist_append(sdi->probes, probe); /* Every analog probe gets its own probe group. */ if (!(pg = g_try_malloc(sizeof(struct sr_probe_group)))) return NULL; pg->name = g_strdup(probe_name); pg->probes = g_slist_append(NULL, probe); /* Every probe group gets a generator struct. */ if (!(ag = g_try_malloc(sizeof(struct analog_gen)))) return NULL; ag->packet.probes = pg->probes; ag->packet.mq = 0; ag->packet.mqflags = 0; ag->packet.unit = SR_UNIT_VOLT; ag->packet.data = ag->pattern_data; ag->pattern = pattern; pg->priv = ag; sdi->probe_groups = g_slist_append(sdi->probe_groups, pg); devc->analog_probe_groups = g_slist_append(devc->analog_probe_groups, pg); if (++pattern == ARRAY_SIZE(analog_pattern_str)) pattern = 0; } sdi->priv = devc; devices = g_slist_append(devices, sdi); drvc->instances = g_slist_append(drvc->instances, sdi); return devices; } static GSList *dev_list(void) { return ((struct drv_context *)(di->priv))->instances; } static int dev_open(struct sr_dev_inst *sdi) { sdi->status = SR_ST_ACTIVE; return SR_OK; } static int dev_close(struct sr_dev_inst *sdi) { sdi->status = SR_ST_INACTIVE; return SR_OK; } static int cleanup(void) { return dev_clear(); } static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_probe_group *probe_group) { struct dev_context *devc; struct sr_probe *probe; struct analog_gen *ag; int pattern; if (!sdi) return SR_ERR_ARG; devc = sdi->priv; switch (id) { case SR_CONF_SAMPLERATE: *data = g_variant_new_uint64(devc->cur_samplerate); break; case SR_CONF_LIMIT_SAMPLES: *data = g_variant_new_uint64(devc->limit_samples); break; case SR_CONF_LIMIT_MSEC: *data = g_variant_new_uint64(devc->limit_msec); break; case SR_CONF_PATTERN_MODE: if (!probe_group) return SR_ERR_PROBE_GROUP; probe = probe_group->probes->data; if (probe->type == SR_PROBE_LOGIC) { pattern = devc->logic_pattern; *data = g_variant_new_string(logic_pattern_str[pattern]); } else if (probe->type == SR_PROBE_ANALOG) { ag = probe_group->priv; pattern = ag->pattern; *data = g_variant_new_string(analog_pattern_str[pattern]); } else return SR_ERR_BUG; break; case SR_CONF_NUM_LOGIC_PROBES: *data = g_variant_new_int32(devc->num_logic_probes); break; case SR_CONF_NUM_ANALOG_PROBES: *data = g_variant_new_int32(devc->num_analog_probes); break; default: return SR_ERR_NA; } return SR_OK; } static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_probe_group *probe_group) { struct dev_context *devc; struct analog_gen *ag; struct sr_probe *probe; int pattern, ret; unsigned int i; const char *stropt; devc = sdi->priv; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; ret = SR_OK; switch (id) { case SR_CONF_SAMPLERATE: devc->cur_samplerate = g_variant_get_uint64(data); sr_dbg("Setting samplerate to %" PRIu64, devc->cur_samplerate); break; case SR_CONF_LIMIT_SAMPLES: devc->limit_msec = 0; devc->limit_samples = g_variant_get_uint64(data); sr_dbg("Setting sample limit to %" PRIu64, devc->limit_samples); break; case SR_CONF_LIMIT_MSEC: devc->limit_msec = g_variant_get_uint64(data); devc->limit_samples = 0; sr_dbg("Setting time limit to %" PRIu64"ms", devc->limit_msec); break; case SR_CONF_PATTERN_MODE: if (!probe_group) return SR_ERR_PROBE_GROUP; stropt = g_variant_get_string(data, NULL); probe = probe_group->probes->data; pattern = -1; if (probe->type == SR_PROBE_LOGIC) { for (i = 0; i < ARRAY_SIZE(logic_pattern_str); i++) { if (!strcmp(stropt, logic_pattern_str[i])) { pattern = i; break; } } if (pattern == -1) return SR_ERR_ARG; devc->logic_pattern = pattern; /* Might as well do this now, these are static. */ if (pattern == PATTERN_ALL_LOW) memset(devc->logic_data, 0x00, LOGIC_BUFSIZE); else if (pattern == PATTERN_ALL_HIGH) memset(devc->logic_data, 0xff, LOGIC_BUFSIZE); sr_dbg("Setting logic pattern to %s", logic_pattern_str[pattern]); } else if (probe->type == SR_PROBE_ANALOG) { for (i = 0; i < ARRAY_SIZE(analog_pattern_str); i++) { if (!strcmp(stropt, analog_pattern_str[i])) { pattern = i; break; } } if (pattern == -1) return SR_ERR_ARG; sr_dbg("Setting analog pattern for probe group %s to %s", probe_group->name, analog_pattern_str[pattern]); ag = probe_group->priv; ag->pattern = pattern; } else return SR_ERR_BUG; break; default: ret = SR_ERR_NA; } return ret; } static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_probe_group *probe_group) { struct sr_probe *probe; GVariant *gvar; GVariantBuilder gvb; (void)sdi; if (key == SR_CONF_SCAN_OPTIONS) { *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, scanopts, ARRAY_SIZE(scanopts), sizeof(int32_t)); return SR_OK; } if (!sdi) return SR_ERR_ARG; if (!probe_group) { switch (key) { case SR_CONF_DEVICE_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, devopts, ARRAY_SIZE(devopts), sizeof(int32_t)); break; case SR_CONF_SAMPLERATE: g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates, ARRAY_SIZE(samplerates), sizeof(uint64_t)); g_variant_builder_add(&gvb, "{sv}", "samplerate-steps", gvar); *data = g_variant_builder_end(&gvb); break; default: return SR_ERR_NA; } } else { probe = probe_group->probes->data; switch (key) { case SR_CONF_DEVICE_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, devopts_pg, ARRAY_SIZE(devopts_pg), sizeof(int32_t)); break; case SR_CONF_PATTERN_MODE: if (probe->type == SR_PROBE_LOGIC) *data = g_variant_new_strv(logic_pattern_str, ARRAY_SIZE(logic_pattern_str)); else if (probe->type == SR_PROBE_ANALOG) *data = g_variant_new_strv(analog_pattern_str, ARRAY_SIZE(analog_pattern_str)); else return SR_ERR_BUG; break; default: return SR_ERR_NA; } } return SR_OK; } static void logic_generator(struct sr_dev_inst *sdi, uint64_t size) { struct dev_context *devc; uint64_t i, j; uint8_t pat; devc = sdi->priv; switch (devc->logic_pattern) { case PATTERN_SIGROK: memset(devc->logic_data, 0x00, size); for (i = 0; i < size; i += devc->logic_unitsize) { for (j = 0; j < devc->logic_unitsize; j++) { pat = pattern_sigrok[(devc->step + j) % sizeof(pattern_sigrok)] >> 1; devc->logic_data[i + j] = ~pat; } devc->step++; } break; case PATTERN_RANDOM: for (i = 0; i < size; i++) devc->logic_data[i] = (uint8_t)(rand() & 0xff); break; case PATTERN_INC: for (i = 0; i < size; i++) { for (j = 0; j < devc->logic_unitsize; j++) { devc->logic_data[i + j] = devc->step; } devc->step++; } break; case PATTERN_ALL_LOW: case PATTERN_ALL_HIGH: /* These were set when the pattern mode was selected. */ break; default: sr_err("Unknown pattern: %d.", devc->logic_pattern); break; } } /* Callback handling data */ static int prepare_data(int fd, int revents, void *cb_data) { struct sr_dev_inst *sdi; struct dev_context *devc; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; struct sr_probe_group *pg; struct analog_gen *ag; GSList *l; uint64_t logic_todo, analog_todo, expected_samplenum, analog_samples, sending_now; int64_t time, elapsed; (void)fd; (void)revents; sdi = cb_data; devc = sdi->priv; /* How many "virtual" samples should we have collected by now? */ time = g_get_monotonic_time(); elapsed = time - devc->starttime; expected_samplenum = elapsed * devc->cur_samplerate / 1000000; /* Of those, how many do we still have to send? */ logic_todo = MIN(expected_samplenum, devc->limit_samples) - devc->logic_counter; analog_todo = MIN(expected_samplenum, devc->limit_samples) - devc->analog_counter; while (logic_todo || analog_todo) { /* Logic */ if (devc->num_logic_probes > 0 && logic_todo > 0) { sending_now = MIN(logic_todo, LOGIC_BUFSIZE / devc->logic_unitsize); logic_generator(sdi, sending_now * devc->logic_unitsize); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = sending_now * devc->logic_unitsize; logic.unitsize = devc->logic_unitsize; logic.data = devc->logic_data; sr_session_send(sdi, &packet); logic_todo -= sending_now; devc->logic_counter += sending_now; } /* Analog, one probe at a time */ if (devc->num_analog_probes > 0 && analog_todo > 0) { sending_now = 0; for (l = devc->analog_probe_groups; l; l = l->next) { pg = l->data; ag = pg->priv; packet.type = SR_DF_ANALOG; packet.payload = &ag->packet; /* FIXME we should make sure we output a whole * period of data before we send out again the * beginning of our buffer. A ring buffer would * help here as well */ analog_samples = MIN(analog_todo, ag->num_samples); /* Whichever probe group gets there first. */ sending_now = MAX(sending_now, analog_samples); ag->packet.num_samples = analog_samples; sr_session_send(sdi, &packet); } analog_todo -= sending_now; devc->analog_counter += sending_now; } } if (devc->logic_counter >= devc->limit_samples && devc->analog_counter >= devc->limit_samples) { sr_dbg("Requested number of samples reached."); dev_acquisition_stop(sdi, cb_data); return TRUE; } return TRUE; } static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) { GSList *l; struct dev_context *devc; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; devc = sdi->priv; if (devc->limit_samples == 0) return SR_ERR; devc->logic_counter = devc->analog_counter = 0; /* * Setting two channels connected by a pipe is a remnant from when the * demo driver generated data in a thread, and collected and sent the * data in the main program loop. * They are kept here because it provides a convenient way of setting * up a timeout-based polling mechanism. */ if (pipe(devc->pipe_fds)) { sr_err("%s: pipe() failed", __func__); return SR_ERR; } for (l = devc->analog_probe_groups; l; l = l->next) { generate_analog_pattern(l->data, devc->cur_samplerate); } devc->channel = g_io_channel_unix_new(devc->pipe_fds[0]); g_io_channel_set_flags(devc->channel, G_IO_FLAG_NONBLOCK, NULL); /* Set channel encoding to binary (default is UTF-8). */ g_io_channel_set_encoding(devc->channel, NULL, NULL); /* Make channels to unbuffered. */ g_io_channel_set_buffered(devc->channel, FALSE); sr_session_source_add_channel(devc->channel, G_IO_IN | G_IO_ERR, 40, prepare_data, (void *)sdi); /* Send header packet to the session bus. */ std_session_send_df_header(cb_data, LOG_PREFIX); /* We use this timestamp to decide how many more samples to send. */ devc->starttime = g_get_monotonic_time(); return SR_OK; } static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *devc; struct sr_datafeed_packet packet; (void)cb_data; devc = sdi->priv; sr_dbg("Stopping aquisition."); sr_session_source_remove_channel(devc->channel); g_io_channel_shutdown(devc->channel, FALSE, NULL); g_io_channel_unref(devc->channel); devc->channel = NULL; /* Send last packet. */ packet.type = SR_DF_END; sr_session_send(sdi, &packet); return SR_OK; } SR_PRIV struct sr_dev_driver demo_driver_info = { .name = "demo", .longname = "Demo driver and pattern generator", .api_version = 1, .init = init, .cleanup = cleanup, .scan = scan, .dev_list = dev_list, .dev_clear = dev_clear, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .priv = NULL, };