/* * This file is part of the libsigrok project. * * Copyright (C) 2013, 2014 Matthias Heidbrink * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /** @file * Gossen Metrawatt Metrahit 1x/2x drivers * @internal */ #include #include #include "protocol.h" /* Internal Headers */ static guchar calc_chksum_14(guchar* dta); static int chk_msg14(struct sr_dev_inst *sdi); /** Set or clear flags in devc->mqflags. */ static void setmqf(struct dev_context *devc, uint64_t flags, gboolean set) { if (set) devc->mqflags |= flags; else devc->mqflags &= ~flags; } /** Decode current type and measured value, Metrahit 12-16. */ static void decode_ctmv_16(uint8_t ctmv, struct dev_context *devc) { devc->mq = 0; devc->unit = 0; devc->mqflags = 0; switch (ctmv) { case 0x00: /* 0000 - */ break; case 0x01: /* 0001 mV DC */ devc->scale1000 = -1; /* Fall through */ case 0x02: /* 0010 V DC */ case 0x03: /* 0011 V AC+DC */ case 0x04: /* 0100 V AC */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_VOLT; if (ctmv <= 0x03) devc->mqflags |= SR_MQFLAG_DC; if (ctmv >= 0x03) { devc->mqflags |= SR_MQFLAG_AC; if (devc->model >= METRAHIT_16S) devc->mqflags |= SR_MQFLAG_RMS; } break; case 0x05: /* 0101 Hz (15S/16S only) */ case 0x06: /* 0110 kHz (15S/16S only) */ devc->mq = SR_MQ_FREQUENCY; devc->unit = SR_UNIT_HERTZ; if (ctmv == 0x06) devc->scale1000 = 1; break; case 0x07: /* 0111 % (15S/16S only) */ devc->mq = SR_MQ_DUTY_CYCLE; devc->unit = SR_UNIT_PERCENTAGE; break; case 0x08: /* 1000 Diode */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_VOLT; devc->mqflags |= SR_MQFLAG_DIODE; break; case 0x09: /* 1001 Ohm, °C */ case 0x0a: /* 1010 kOhm */ case 0x0b: /* 1011 MOhm */ devc->mq = SR_MQ_RESISTANCE; /* Changed to temp. later if req.*/ devc->unit = SR_UNIT_OHM; devc->scale1000 = ctmv - 0x09; break; case 0x0c: /* 1100 nF (15S/16S only) */ case 0x0d: /* 1101 µF (15S/16S only) */ devc->mq = SR_MQ_CAPACITANCE; devc->unit = SR_UNIT_FARAD; if (ctmv == 0x0c) devc->scale1000 = -3; else devc->scale1000 = -2; break; case 0x0e: /* mA, µA */ devc->scale1000 = -1; /* Fall through. */ case 0x0f: /* A */ devc->mq = SR_MQ_CURRENT; devc->unit = SR_UNIT_AMPERE; if (devc->model == METRAHIT_16S) devc->mqflags |= SR_MQFLAG_RMS; /* 16I A only with clamp, RMS questionable. */ break; } } /** * Decode range/sign/acdc byte special chars (Metrahit 12-16). * * @param[in] rs Range and sign byte. */ static void decode_rs_16(uint8_t rs, struct dev_context *devc) { sr_spew("decode_rs_16(%d) scale = %f", rs, devc->scale); if (rs & 0x04) /* Sign */ devc->scale *= -1.0; if (devc->mq == SR_MQ_CURRENT) { if (rs & 0x08) /* Current is AC */ devc->mqflags |= SR_MQFLAG_AC; else devc->mqflags |= SR_MQFLAG_DC; } switch (rs & 0x03) { case 0: if (devc->mq == SR_MQ_VOLTAGE) /* V */ devc->scale *= 0.1; else if (devc->mq == SR_MQ_CURRENT) /* 000.0 µA */ devc->scale *= 0.00001; else if (devc->mq == SR_MQ_RESISTANCE) { if (devc->buflen >= 10) { /* °C with 10 byte msg type, otherwise GOhm. */ devc->mq = SR_MQ_TEMPERATURE; devc->unit = SR_UNIT_CELSIUS; devc->scale *= 0.01; } else if (devc->scale1000 == 2) { /* 16I Iso 500/1000V 3 GOhm */ devc->scale *= 0.1; } } break; case 1: devc->scale *= 0.0001; break; case 2: devc->scale *= 0.001; break; case 3: devc->scale *= 0.01; break; } } /** * Decode special chars, Metrahit 12-16. * * @param[in] spc Special characters 1 and 2 (s1 | (s2 << 4)). */ static void decode_spc_16(uint8_t spc, struct dev_context *devc) { /* xxxx1xxx ON */ /* TODO: What does that mean? Power on? The 16I sets this. */ /* xxxxx1xx BEEP */ /* xxxxxx1x Low battery */ /* xxxxxxx1 FUSE */ /* 1xxxxxxx MIN */ setmqf(devc, SR_MQFLAG_MIN, spc & 0x80); /* x1xxxxxx MAN */ setmqf(devc, SR_MQFLAG_AUTORANGE, !(spc & 0x40)); /* xx1xxxxx DATA */ setmqf(devc, SR_MQFLAG_HOLD, spc & 0x20); /* xxx1xxxx MAX */ setmqf(devc, SR_MQFLAG_MAX, spc & 0x10); } /** Decode current type and measured value, Metrahit 18. */ static void decode_ctmv_18(uint8_t ctmv, struct dev_context *devc) { devc->mq = 0; devc->unit = 0; devc->mqflags = 0; switch (ctmv) { case 0x00: /* 0000 - */ break; case 0x01: /* 0001 V AC */ case 0x02: /* 0010 V AC+DC */ case 0x03: /* 0011 V DC */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_VOLT; if (ctmv <= 0x02) devc->mqflags |= (SR_MQFLAG_AC | SR_MQFLAG_RMS); if (ctmv >= 0x02) devc->mqflags |= SR_MQFLAG_DC; break; case 0x04: /* 0100 Ohm/Ohm with buzzer */ devc->mq = SR_MQ_RESISTANCE; devc->unit = SR_UNIT_OHM; break; case 0x05: /* 0101 Diode/Diode with buzzer */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_VOLT; devc->mqflags |= SR_MQFLAG_DIODE; break; case 0x06: /* 0110 °C */ devc->mq = SR_MQ_TEMPERATURE; devc->unit = SR_UNIT_CELSIUS; break; case 0x07: /* 0111 F */ devc->mq = SR_MQ_CAPACITANCE; devc->unit = SR_UNIT_FARAD; break; case 0x08: /* 1000 mA DC */ case 0x09: /* 1001 A DC */ case 0x0a: /* 1010 mA AC+DC */ case 0x0b: /* 1011 A AC+DC */ devc->mq = SR_MQ_CURRENT; devc->unit = SR_UNIT_AMPERE; devc->mqflags |= SR_MQFLAG_DC; if (ctmv >= 0x0a) devc->mqflags |= (SR_MQFLAG_AC | SR_MQFLAG_RMS); if ((ctmv == 0x08) || (ctmv == 0x0a)) devc->scale1000 = -1; break; case 0x0c: /* 1100 Hz */ devc->mq = SR_MQ_FREQUENCY; devc->unit = SR_UNIT_HERTZ; break; case 0x0d: /* 1101 dB */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_DECIBEL_VOLT; devc->mqflags |= SR_MQFLAG_AC; /* dB available for AC only */ break; case 0x0e: /* 1110 Events AC, Events AC+DC. Actually delivers just * current voltage via IR, nothing more. */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_VOLT; devc->mqflags |= SR_MQFLAG_AC | SR_MQFLAG_DC | SR_MQFLAG_RMS; break; case 0x0f: /* 1111 Clock */ devc->mq = SR_MQ_TIME; devc->unit = SR_UNIT_SECOND; devc->mqflags |= SR_MQFLAG_DURATION; break; } } /** * Decode range/sign/acdc byte special chars, Metrahit 18. * * @param[in] rs Rance/sign byte. */ static void decode_rs_18(uint8_t rs, struct dev_context *devc) { int range; /* Sign */ if (((devc->scale > 0) && (rs & 0x08)) || ((devc->scale < 0) && !(rs & 0x08))) devc->scale *= -1.0; /* Range */ range = rs & 0x07; switch (devc->mq) { case SR_MQ_VOLTAGE: if (devc->unit == SR_UNIT_DECIBEL_VOLT) { devc->scale *= pow(10.0, -2); /* * When entering relative mode, the device switches * from 10 byte to 6 byte msg format. Unfortunately * it switches back to 10 byte when the second value * is measured, so that's not sufficient to * identify relative mode. */ } else if (devc->vmains_29S) devc->scale *= pow(10.0, range - 2); else devc->scale *= pow(10.0, range - 5); break; case SR_MQ_CURRENT: if (devc->scale1000 == -1) devc->scale *= pow(10.0, range - 5); else devc->scale *= pow(10.0, range - 4); break; case SR_MQ_RESISTANCE: devc->scale *= pow(10.0, range - 2); break; case SR_MQ_FREQUENCY: devc->scale *= pow(10.0, range - 2); break; case SR_MQ_TEMPERATURE: devc->scale *= pow(10.0, range - 2); break; case SR_MQ_CAPACITANCE: devc->scale *= pow(10.0, range - 13); break; /* TODO: 29S Mains measurements. */ } } /** * Decode special chars, Metrahit 18. * * @param[in] spc Special characters 1 and 2 (s1 | (s2 << 4)). */ static void decode_spc_18(uint8_t spc, struct dev_context *devc) { /* xxxx1xxx ZERO */ /* xxxxx1xx BEEP */ /* xxxxxx1x Low battery */ /* xxxxxxx1 Fuse */ if (devc->mq == SR_MQ_TIME) { /* xxx1xxxx Clock running: 1; stop: 0 */ sr_spew("Clock running: %d", spc >> 4); } else { /* 1xxxxxxx MAN */ setmqf(devc, SR_MQFLAG_AUTORANGE, !(spc & 0x80)); /* x1xxxxxx MIN */ setmqf(devc, SR_MQFLAG_MIN, spc & 0x40); /* xx1xxxxx MAX */ setmqf(devc, SR_MQFLAG_MAX, spc & 0x20); /* xxx1xxxx DATA */ setmqf(devc, SR_MQFLAG_HOLD, spc & 0x10); } } /** * Decode current type and measured value, Metrahit 2x. * * @param[in] ctmv Current type and measured value (v1 | (v2 << 4)). */ static void decode_ctmv_2x(uint8_t ctmv, struct dev_context *devc) { if ((ctmv > 0x1c) || (!devc)) { sr_err("decode_ctmv_2x(%d): invalid param(s)!", ctmv); return; } devc->mq = 0; devc->unit = 0; devc->mqflags = 0; switch (ctmv) { /* 00000 unused */ case 0x01: /* 00001 V DC */ case 0x02: /* 00010 V AC+DC */ case 0x03: /* 00011 V AC */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_VOLT; if (ctmv <= 0x02) devc->mqflags |= SR_MQFLAG_DC; if (ctmv >= 0x02) { devc->mqflags |= SR_MQFLAG_AC; if (devc->model >= METRAHIT_24S) devc->mqflags |= SR_MQFLAG_RMS; } break; case 0x04: /* 00100 mA DC */ case 0x05: /* 00101 mA AC+DC */ devc->scale1000 = -1; case 0x06: /* 00110 A DC */ case 0x07: /* 00111 A AC+DC */ devc->mq = SR_MQ_CURRENT; devc->unit = SR_UNIT_AMPERE; devc->mqflags |= SR_MQFLAG_DC; if ((ctmv == 0x05) || (ctmv == 0x07)) { devc->mqflags |= SR_MQFLAG_AC; if (devc->model >= METRAHIT_24S) devc->mqflags |= SR_MQFLAG_RMS; } break; case 0x08: /* 01000 Ohm */ devc->mq = SR_MQ_RESISTANCE; devc->unit = SR_UNIT_OHM; break; case 0x09: /* 01001 F */ devc->mq = SR_MQ_CAPACITANCE; devc->unit = SR_UNIT_FARAD; devc->scale *= 0.1; break; case 0x0a: /* 01010 V dB */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_DECIBEL_VOLT; devc->mqflags |= SR_MQFLAG_AC; if (devc->model >= METRAHIT_24S) devc->mqflags |= SR_MQFLAG_RMS; break; case 0x0b: /* 01011 Hz U ACDC */ case 0x0c: /* 01100 Hz U AC */ devc->mq = SR_MQ_FREQUENCY; devc->unit = SR_UNIT_HERTZ; devc->mqflags |= SR_MQFLAG_AC; if (ctmv <= 0x0b) devc->mqflags |= SR_MQFLAG_DC; break; case 0x0d: /* 01101 W on power, mA range (29S only) */ devc->scale *= 0.001; /* Fall through! */ case 0x0e: /* 01110 W on power, A range (29S only) */ devc->mq = SR_MQ_POWER; devc->unit = SR_UNIT_WATT; break; case 0x0f: /* 01111 Diode */ case 0x10: /* 10000 Diode with buzzer (actually cont. with voltage) */ devc->unit = SR_UNIT_VOLT; if (ctmv == 0x0f) { devc->mq = SR_MQ_VOLTAGE; devc->mqflags |= SR_MQFLAG_DIODE; } else { devc->mq = SR_MQ_CONTINUITY; devc->scale *= 0.00001; } devc->unit = SR_UNIT_VOLT; break; case 0x11: /* 10001 Ohm with buzzer */ devc->mq = SR_MQ_CONTINUITY; devc->unit = SR_UNIT_OHM; devc->scale1000 = -1; break; case 0x12: /* 10010 Temperature */ devc->mq = SR_MQ_TEMPERATURE; devc->unit = SR_UNIT_CELSIUS; /* This can be Fahrenheit. That is detected by range=4 later. */ break; /* 0x13 10011, 0x14 10100 unsed */ case 0x15: /* 10101 Press (29S only) */ /* TODO: What does that mean? Possibly phase shift? Then we need a unit/flag for it. */ devc->mq = SR_MQ_GAIN; devc->unit = SR_UNIT_PERCENTAGE; break; case 0x16: /* 10110 Pulse W (29S only) */ /* TODO: Own unit and flag for this! */ devc->mq = SR_MQ_POWER; devc->unit = SR_UNIT_WATT; break; case 0x17: /* 10111 TRMS V on mains (29S only) */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_VOLT; devc->mqflags |= (SR_MQFLAG_AC | SR_MQFLAG_RMS); devc->vmains_29S = TRUE; break; case 0x18: /* 11000 Counter (zero crossings of a signal) */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_UNITLESS; break; case 0x19: /* 11001 Events U ACDC */ case 0x1a: /* 11010 Events U AC */ /* TODO: No unit or flags for this yet! */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_UNITLESS; devc->mqflags |= SR_MQFLAG_AC; if (ctmv <= 0x19) devc->mqflags |= SR_MQFLAG_DC; break; case 0x1b: /* 11011 pulse on mains (29S only) */ /* TODO: No unit or flags for this yet! */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_UNITLESS; devc->mqflags |= SR_MQFLAG_AC; break; case 0x1c: /* 11100 dropout on mains (29S only) */ /* TODO: No unit or flags for this yet! */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_UNITLESS; devc->mqflags |= SR_MQFLAG_AC; break; case 0x1f: /* 11111 Undocumented: 25S in stopwatch mode. The value is voltage, not time, so treat it such. */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_VOLT; devc->mqflags |= SR_MQFLAG_DC; break; case 0x20: /* 100000 Undocumented: 25S in event count mode. Value is 0 anyway. */ devc->mq = SR_MQ_VOLTAGE; devc->unit = SR_UNIT_UNITLESS; break; default: sr_err("decode_ctmv_2x(%d, ...): Unknown ctmv!", ctmv); break; } } /** * Decode range/sign/acdc byte special chars, Metrahit 2x, table TR. * * @param[in] rs Range/sign byte. */ static void decode_rs_2x(uint8_t rs, struct dev_context *devc) { int range; /* Sign */ if (((devc->scale > 0) && (rs & 0x08)) || ((devc->scale < 0) && !(rs & 0x08))) devc->scale *= -1.0; /* Range */ range = rs & 0x07; switch (devc->mq) { case SR_MQ_VOLTAGE: if (devc->unit == SR_UNIT_DECIBEL_VOLT) devc->scale *= pow(10.0, -3); else if (devc->vmains_29S) devc->scale *= pow(10.0, range - 2); else devc->scale *= pow(10.0, range - 6); break; case SR_MQ_CURRENT: if (devc->scale1000 != -1) /* uA, mA */ range += 1;/* mA and A ranges differ by 10^4, not 10^3!*/ devc->scale *= pow(10.0, range - 6); break; case SR_MQ_RESISTANCE: devc->scale *= pow(10.0, range - 3); break; case SR_MQ_FREQUENCY: devc->scale *= pow(10.0, range - 3); break; case SR_MQ_TEMPERATURE: if (range == 4) /* Indicator for °F */ devc->unit = SR_UNIT_FAHRENHEIT; devc->scale *= pow(10.0, - 2); break; case SR_MQ_CAPACITANCE: if (range == 7) range -= 1; /* Same value as range 6 */ devc->scale *= pow(10.0, range - 13); break; /* TODO: 29S Mains measurements. */ } } /** * Decode range/sign/acdc byte special chars, Metrahit 2x, table TR 2. * * @param[in] rs Range/sign byte. */ static void decode_rs_2x_TR2(uint8_t rs, struct dev_context *devc) { int range; /* Range */ range = rs & 0x07; switch (devc->mq) { case SR_MQ_CURRENT: if (devc->scale1000 == -1) /* mA */ switch(range) { case 0: case 1: /* 100, 300 µA */ devc->scale *= pow(10.0, -6); break; case 2: case 3: /* 1, 3 mA */ devc->scale *= pow(10.0, -5); break; case 4: case 5: /* 10, 30 mA */ devc->scale *= pow(10.0, -4); break; case 6: case 7: /* 100, 300 mA */ devc->scale *= pow(10.0, -3); break; } else /* A */ switch(range) { case 0: case 1: /* 1, 3 A */ devc->scale *= pow(10.0, -5); break; case 2: /* 10 A */ devc->scale *= pow(10.0, -4); break; } break; default: decode_rs_2x(rs, devc); return; } /* Sign */ if (((devc->scale > 0) && (rs & 0x08)) || ((devc->scale < 0) && !(rs & 0x08))) devc->scale *= -1.0; } /** * Decode special chars (Metrahit 2x). * * @param[in] spc Special characters 1 and 2 (s1 | (s2 << 4)). */ static void decode_spc_2x(uint8_t spc, struct dev_context *devc) { /* xxxxxxx1 Fuse */ /* xxxxxx1x Low battery */ /* xxxxx1xx BEEP */ /* xxxx1xxx ZERO */ /* xxx1xxxx DATA */ setmqf(devc, SR_MQFLAG_HOLD, spc & 0x10); /* x11xxxxx unused */ /* 1xxxxxxx MAN */ setmqf(devc, SR_MQFLAG_AUTORANGE, !(spc & 0x80)); } /** Clean range and sign. */ static void clean_rs_v(struct dev_context *devc) { devc->value = 0.0; devc->scale = 1.0; } /** Clean current type, measured variable, range and sign. */ static void clean_ctmv_rs_v(struct dev_context *devc) { devc->mq = 0; devc->unit = 0; devc->mqflags = 0; devc->scale1000 = 0; devc->vmains_29S = FALSE; clean_rs_v(devc); } /** Send prepared value. */ static void send_value(struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_datafeed_analog analog; struct sr_datafeed_packet packet; devc = sdi->priv; memset(&analog, 0, sizeof(analog)); analog.probes = sdi->probes; analog.num_samples = 1; analog.mq = devc->mq; analog.unit = devc->unit; analog.mqflags = devc->mqflags; analog.data = &devc->value; memset(&packet, 0, sizeof(packet)); packet.type = SR_DF_ANALOG; packet.payload = &analog; sr_session_send(devc->cb_data, &packet); devc->num_samples++; } /** Process 6-byte data message, Metrahit 1x/2x send mode. */ static void process_msg_dta_6(struct sr_dev_inst *sdi) { struct dev_context *devc; int cnt; uint8_t dgt; devc = sdi->priv; clean_rs_v(devc); /* Byte 0, range and sign */ if (devc->model <= METRAHIT_16X) decode_rs_16(bc(devc->buf[0]), devc); else if (devc->model < METRAHIT_2X) decode_rs_18(bc(devc->buf[0]), devc); else { decode_rs_2x(bc(devc->buf[0]), devc); devc->scale *= 10; /* Compensate for format having only 5 digits, decode_rs_2x() assumes 6. */ } /* Bytes 1-5, digits (ls first). */ for (cnt = 0; cnt < 5; cnt++) { dgt = bc(devc->buf[1 + cnt]); if (dgt >= 10) { /* 10 Overload; on model <= 16X also 11 possible. */ devc->value = NAN; devc->scale = 1.0; break; } devc->value += pow(10.0, cnt) * dgt; } sr_spew("process_msg_dta_6() value=%f scale=%f scale1000=%d", devc->value, devc->scale, devc->scale1000); if (devc->value != NAN) devc->value *= devc->scale * pow(1000.0, devc->scale1000); /* Create and send packet. */ send_value(sdi); } /** Process 5-byte info message, Metrahit 1x/2x. */ static void process_msg_inf_5(struct sr_dev_inst *sdi) { struct dev_context *devc; enum model model; devc = sdi->priv; clean_ctmv_rs_v(devc); /* Process byte 0 */ model = gmc_decode_model_sm(bc(devc->buf[0])); if (model != devc->model) { sr_warn("Model mismatch in data: Detected %s, now %s", gmc_model_str(devc->model), gmc_model_str(model)); } /* Process bytes 1-4 */ if (devc->model <= METRAHIT_16X) { decode_ctmv_16(bc(devc->buf[1]), devc); decode_spc_16(bc(devc->buf[2]) | (bc(devc->buf[3]) << 4), devc); decode_rs_16(bc(devc->buf[4]), devc); } else if (devc->model <= METRAHIT_18S) { decode_ctmv_18(bc(devc->buf[1]), devc); decode_spc_18(bc(devc->buf[2]) | (bc(devc->buf[3]) << 4), devc); decode_rs_18(bc(devc->buf[4]), devc); } else { /* Must be Metrahit 2x */ decode_ctmv_2x(bc(devc->buf[1]), devc); decode_spc_2x(bc(devc->buf[2]) | (bc(devc->buf[3]) << 4), devc); decode_rs_2x(bc(devc->buf[4]), devc); } } /** Process 10-byte info/data message, Metrahit 15+. */ static void process_msg_inf_10(struct sr_dev_inst *sdi) { struct dev_context *devc; int cnt; uint8_t dgt; devc = sdi->priv; process_msg_inf_5(sdi); /* Now decode numbers */ for (cnt = 0; cnt < 5; cnt++) { dgt = bc(devc->buf[5 + cnt]); if (dgt == 11) { /* Empty digit */ dgt = 0; } else if (dgt >= 12) { /* Overload */ devc->value = NAN; devc->scale = 1.0; break; } devc->value += pow(10.0, cnt) * dgt; } sr_spew("process_msg_inf_10() value=%f scale=%f scalet=%d", devc->value, devc->scale, devc->scale1000); if (devc->value != NAN) devc->value *= devc->scale * pow(1000.0, devc->scale1000); /* Create and send packet. */ send_value(sdi); } /** Decode send interval (Metrahit 2x only). */ static const char *decode_send_interval(uint8_t si) { switch (si) { case 0x00: return "0.05"; case 0x01: return "0.1"; case 0x02: return "0.2"; case 0x03: return "0.5"; case 0x04: return "00:01"; case 0x05: return "00:02"; case 0x06: return "00:05"; case 0x07: return "00:10"; case 0x08: return "00:20"; case 0x09: return "00:30"; case 0x0a: return "01:00"; case 0x0b: return "02:00"; case 0x0c: return "05:00"; case 0x0d: return "10:00"; case 0x0e: return "----"; case 0x0f: return "data"; default: return "Unknown value"; } } /** Process 13-byte info/data message, Metrahit 2x. */ static void process_msg_inf_13(struct sr_dev_inst *sdi) { struct dev_context *devc; enum model model; int cnt; uint8_t dgt; devc = sdi->priv; clean_ctmv_rs_v(devc); /* Byte 0, model. */ model = gmc_decode_model_sm(bc(devc->buf[0])); if (model != devc->model) { sr_warn("Model mismatch in data: Detected %s, now %s", gmc_model_str(devc->model), gmc_model_str(model)); } /* Bytes 1-4, 11. */ decode_ctmv_2x(bc(devc->buf[1]) | (bc(devc->buf[11]) << 4), devc); decode_spc_2x(bc(devc->buf[2]) | (bc(devc->buf[3]) << 4), devc); decode_rs_2x(bc(devc->buf[4]), devc); /* Bytes 5-10, digits (ls first). */ for (cnt = 0; cnt < 6; cnt++) { dgt = bc(devc->buf[5 + cnt]); if (dgt == 10) { /* Overload */ devc->value = NAN; devc->scale = 1.0; break; } devc->value += pow(10.0, cnt) * dgt; } sr_spew("process_msg_inf_13() value=%f scale=%f scale1000=%d mq=%d " "unit=%d mqflags=0x%02llx", devc->value, devc->scale, devc->scale1000, devc->mq, devc->unit, devc->mqflags); if (devc->value != NAN) devc->value *= devc->scale * pow(1000.0, devc->scale1000); /* Byte 12, Send Interval */ sr_spew("Send interval: %s", decode_send_interval(bc(devc->buf[12]))); /* Create and send packet. */ send_value(sdi); } /** Dump contents of 14-byte message. * @param buf Pointer to array of 14 data bytes. * @param[in] raw Write only data bytes, no interpretation. */ void dump_msg14(guchar* buf, gboolean raw) { if (!buf) return; if (raw) sr_spew("msg14: 0x %02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13]); else sr_spew("msg14: 0x a=%d c1=%02x c2=%02x cmd=%02x dta=%02x " "%02x %02x %02x %02x %02x %02x %02x %02x chs=%02x", buf[1] == 0x2b?buf[0] >> 2:buf[0] % 0x0f, buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13]); } /** Calc checksum for 14 byte message type. * * @param[in] dta Pointer to array of 13 data bytes. * @return Checksum. */ static guchar calc_chksum_14(guchar* dta) { guchar cnt, chs; for (chs = 0, cnt = 0; cnt < 13; cnt++) chs += dta[cnt]; return (64 - chs) & MASK_6BITS; } /** Check 14-byte message, Metrahit 2x. */ static int chk_msg14(struct sr_dev_inst *sdi) { struct dev_context *devc; int retc; gboolean isreq; /* Message is request to multimeter (otherwise response) */ uint8_t addr; /* Adaptor address */ retc = SR_OK; /* Check parameters and message */ if (!sdi || !(devc = sdi->priv)) return SR_ERR_ARG; if (devc->buflen != 14) { sr_err("process_msg_14(): Msg len 14 expected!"); return SR_ERR_ARG; } isreq = devc->buf[1] == 0x2b; if (isreq) addr = devc->buf[0] >> 2; else addr = devc->buf[0] & 0x0f; if ((devc->addr != addr) && !(isreq && (addr == 0))) { sr_err("process_msg_14(): Address mismatch, msg for other device!"); retc = SR_ERR_ARG; } if (devc->buf[1] == 0) { /* Error msg from device! */ retc = SR_ERR_ARG; switch (devc->buf[2]) { case 1: /* Not used */ sr_err("Device: Illegal error code!"); break; case 2: /* Incorrect check sum of received block */ sr_err("Device: Incorrect checksum in cmd!"); break; case 3: /* Incorrect length of received block */ sr_err("Device: Incorrect block length in cmd!"); break; case 4: /* Incorrect 2nd or 3rd byte */ sr_err("Device: Incorrect byte 2 or 3 in cmd!"); break; case 5: /* Parameter out of range */ sr_err("Device: Parameter out of range!"); break; default: sr_err("Device: Unknown error code!"); } retc = SR_ERR_ARG; } else if (!isreq && ((devc->buf[1] != 0x27) || (devc->buf[2] != 0x3f))) { sr_err("process_msg_14(): byte 1/2 unexpected!"); retc = SR_ERR_ARG; } if (calc_chksum_14(devc->buf) != devc->buf[13]) { sr_err("process_msg_14(): Invalid checksum!"); retc = SR_ERR_ARG; } if (retc != SR_OK) dump_msg14(devc->buf, TRUE); return retc; } /** Check 14-byte message, Metrahit 2x. */ SR_PRIV int process_msg14(struct sr_dev_inst *sdi) { struct dev_context *devc; int retc; uint8_t addr; uint8_t cnt, dgt; if ((retc = chk_msg14(sdi)) != SR_OK) return retc; devc = sdi->priv; clean_ctmv_rs_v(devc); addr = devc->buf[0] & MASK_6BITS; if (addr != devc->addr) sr_info("Device address mismatch %d/%d!", addr, devc->addr); switch (devc->buf[3]) { /* That's the command this reply is for */ /* 0 cannot occur, the respective message is not a 14-byte message */ case 1: /* Read first free and occupied address */ sr_spew("Cmd %d unimplemented!", devc->buf[3]); break; case 2: /* Clear all RAM in multimeter */ sr_spew("Cmd %d unimplemented!", devc->buf[3]); break; case 3: /* Read firmware version and status */ sr_spew("Cmd 3, Read firmware and status", devc->buf[3]); switch (devc->cmd_idx) { case 0: devc->fw_ver_maj = devc->buf[5]; devc->fw_ver_min = devc->buf[4]; sr_spew("Firmware version %d.%d", (int)devc->fw_ver_maj, (int)devc->fw_ver_min); sr_spew("Rotary Switch Position (1..10): %d", (int)devc->buf[6]); /** Docs say values 0..9, but that's not true */ sr_spew("Measurement Function: %d ", (int)devc->buf[7]); decode_ctmv_2x(devc->buf[7], devc); sr_spew("Range: 0x%x", devc->buf[8]); decode_rs_2x_TR2(devc->buf[8] & 0x0f, devc); /* Docs wrong, uses conversion table TR_2! */ devc->autorng = (devc->buf[8] & 0x20) == 0; // TODO 9, 10: 29S special functions devc->ubatt = 0.1 * (float)devc->buf[11]; devc->model = gmc_decode_model_bd(devc->buf[12]); sr_spew("Model=%s, battery voltage=%2.1f V", gmc_model_str(devc->model), (double)devc->ubatt); break; case 1: sr_spew("Internal version %d.%d", (int)devc->buf[5], (int)devc->buf[4]); sr_spew("Comm mode: 0x%x", (int)devc->buf[6]); sr_spew("Block cnt%%64: %d", (int)devc->buf[7]); sr_spew("drpCi: %d drpCh: %d", (int)devc->buf[8], (int)devc->buf[9]); // Semantics undocumented. Possibly Metrahit 29S dropouts stuff? break; default: sr_spew("Cmd 3: Unknown cmd_idx=%d", devc->cmd_idx); break; } break; case 4: /* Set real time, date, sample rate, trigger, ... */ sr_spew("Cmd %d unimplemented!", devc->buf[3]); break; case 5: /* Read real time, date, sample rate, trigger... */ sr_spew("Cmd %d unimplemented!", devc->buf[3]); break; case 6: /* Set modes or power off */ sr_spew("Cmd %d unimplemented!", devc->buf[3]); break; case 7: /* Set measurement function, range, autom/man. */ sr_spew("Cmd %d unimplemented!", devc->buf[3]); break; case 8: /* Get one measurement value */ sr_spew("Cmd 8, get one measurement value"); sr_spew("Measurement Function: %d ", (int)devc->buf[5]); decode_ctmv_2x(devc->buf[5], devc); if (!(devc->buf[6] & 0x10)) /* If bit4=0, old data. */ return SR_OK; decode_rs_2x_TR2(devc->buf[6] & 0x0f, devc); // The docs say conversion table TR_3, but that does not work setmqf(devc, SR_MQFLAG_AUTORANGE, devc->autorng); /* 6 digits */ for (cnt = 0; cnt < 6; cnt++) { dgt = bc(devc->buf[7 + cnt]); if (dgt == 10) { /* Overload */ devc->value = NAN; devc->scale = 1.0; break; } else if (dgt == 13) { /* FUSE */ sr_err("FUSE!"); } else if (dgt == 14) { /* Function recognition mode, OPEN */ sr_info("Function recognition mode, OPEN!"); devc->value = NAN; devc->scale = 1.0; break; } devc->value += pow(10.0, cnt) * dgt; } sr_spew("process_msg14() value=%f scale=%f scale1000=%d mq=%d " "unit=%d mqflags=0x%02llx", devc->value, devc->scale, devc->scale1000, devc->mq, devc->unit, devc->mqflags); if (devc->value != NAN) devc->value *= devc->scale * pow(1000.0, devc->scale1000); send_value(sdi); break; default: sr_spew("Unknown cmd %d!", devc->buf[3]); break; } return SR_OK; } /** Data reception callback function. */ SR_PRIV int gmc_mh_1x_2x_receive_data(int fd, int revents, void *cb_data) { struct sr_dev_inst *sdi; struct dev_context *devc; struct sr_serial_dev_inst *serial; uint8_t buf, msgt; int len; gdouble elapsed_s; (void)fd; if (!(sdi = cb_data)) return TRUE; if (!(devc = sdi->priv)) return TRUE; serial = sdi->conn; if (revents == G_IO_IN) { /* Serial data arrived. */ while (GMC_BUFSIZE - devc->buflen - 1 > 0) { len = serial_read(serial, devc->buf + devc->buflen, 1); if (len < 1) break; buf = *(devc->buf + devc->buflen); sr_spew("read 0x%02x/%d/%d", buf, buf, buf & MSGC_MASK); devc->buflen += len; if (!devc->settings_ok) { /* * If no device type/settings record processed * yet, wait for one. */ if ((devc->buf[0] & MSGID_MASK) != MSGID_INF) { devc->buflen = 0; continue; } devc->settings_ok = TRUE; } msgt = devc->buf[0] & MSGID_MASK; switch (msgt) { case MSGID_INF: if (devc->buflen == 13) { process_msg_inf_13(sdi); devc->buflen = 0; continue; } else if ((devc->buflen == 10) && (devc->model <= METRAHIT_18S)) { process_msg_inf_10(sdi); devc->buflen = 0; continue; } else if ((devc->buflen >= 5) && (devc->buf[devc->buflen - 1] & MSGID_MASK) != MSGID_DATA) { /* * Char just received is beginning * of next message. */ process_msg_inf_5(sdi); devc->buf[0] = devc->buf[devc->buflen - 1]; devc->buflen = 1; continue; } break; case MSGID_DTA: case MSGID_D10: if (devc->buflen == 6) { process_msg_dta_6(sdi); devc->buflen = 0; } break; case MSGID_DATA: sr_err("Comm error, unexpected data byte!"); devc->buflen = 0; break; } } } /* If number of samples or time limit reached, stop acquisition. */ if (devc->limit_samples && (devc->num_samples >= devc->limit_samples)) sdi->driver->dev_acquisition_stop(sdi, cb_data); if (devc->limit_msec) { elapsed_s = g_timer_elapsed(devc->elapsed_msec, NULL); if ((elapsed_s * 1000) >= devc->limit_msec) sdi->driver->dev_acquisition_stop(sdi, cb_data); } return TRUE; } SR_PRIV int gmc_mh_2x_receive_data(int fd, int revents, void *cb_data) { struct sr_dev_inst *sdi; struct dev_context *devc; struct sr_serial_dev_inst *serial; uint8_t buf; int len; gdouble elapsed_s; (void)fd; if (!(sdi = cb_data)) return TRUE; if (!(devc = sdi->priv)) return TRUE; serial = sdi->conn; if (revents == G_IO_IN) { /* Serial data arrived. */ while (GMC_BUFSIZE - devc->buflen - 1 > 0) { len = serial_read(serial, devc->buf + devc->buflen, 1); if (len < 1) break; buf = *(devc->buf + devc->buflen); sr_spew("read 0x%02x/%d/%d", buf, buf, buf & MASK_6BITS); devc->buf[devc->buflen] &= MASK_6BITS; devc->buflen += len; if (devc->buflen == 14) { devc->response_pending = FALSE; sr_spew("gmc_mh_2x_receive_data processing msg"); process_msg14(sdi); devc->buflen = 0; } } } /* If number of samples or time limit reached, stop acquisition. */ if (devc->limit_samples && (devc->num_samples >= devc->limit_samples)) sdi->driver->dev_acquisition_stop(sdi, cb_data); if (devc->limit_msec) { elapsed_s = g_timer_elapsed(devc->elapsed_msec, NULL); if ((elapsed_s * 1000) >= devc->limit_msec) sdi->driver->dev_acquisition_stop(sdi, cb_data); } /* Request next data set, if required */ if (sdi->status == SR_ST_ACTIVE) { if (devc->response_pending) { gint64 elapsed_us = g_get_monotonic_time() - devc->req_sent_at; if (elapsed_us > 1*1000*1000) /* Timeout! */ devc->response_pending = FALSE; } if (!devc->response_pending) { devc->cmd_seq++; if (devc->cmd_seq % 10 == 0) { if (req_stat14(sdi, FALSE) != SR_OK) return FALSE; } else if (req_meas14(sdi) != SR_OK) return FALSE; } } return TRUE; } /** Create 14 (42) byte command for Metrahit 2x multimeter in bidir mode. * * Actually creates 42 bytes due to the encoding method used. * @param[in] addr Device address (0=adapter, 1..15 multimeter; for byte 0). * @param[in] func Function code (byte 3). * @param[in] params Further parameters (9 bytes) * @param[out] buf Buffer to create msg in (42 bytes). */ void create_cmd_14(guchar addr, guchar func, guchar* params, guchar* buf) { uint8_t dta[14]; /* Unencoded message */ int cnt; if (!params || !buf) return; /* 0: Address */ dta[0] = ((addr << 2) | 0x03) & MASK_6BITS; /* 1-3: Set command header */ dta[1] = 0x2b; dta[2] = 0x3f; dta[3] = func; /* 4-12: Copy further parameters */ for (cnt = 0; cnt < 9; cnt++) dta[cnt+4] = (params[cnt] & MASK_6BITS); /* 13: Checksum (b complement) */ dta[13] = calc_chksum_14(dta); /* The whole message is packed into 3 bytes per byte now (lower 6 bits only) the most * peculiar way I have ever seen. Possibly to improve IR communication? */ for (cnt = 0; cnt < 14; cnt++) { buf[3*cnt] = (dta[cnt] & 0x01 ? 0x0f : 0) | (dta[cnt] & 0x02 ? 0xf0 : 0); buf[3*cnt + 1] = (dta[cnt] & 0x04 ? 0x0f : 0) | (dta[cnt] & 0x08 ? 0xf0 : 0); buf[3*cnt + 2] = (dta[cnt] & 0x10 ? 0x0f : 0) | (dta[cnt] & 0x20 ? 0xf0 : 0); } } /** Request one measurement from 2x multimeter (msg 8). * */ int req_meas14(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_serial_dev_inst *serial; uint8_t params[9]; uint8_t msg[42]; if (!sdi || !(devc = sdi->priv) || !(serial = sdi->conn)) return SR_ERR; memset(params, 0, sizeof(params)); params[0] = 0; devc->cmd_idx = 0; create_cmd_14(devc->addr, 8, params, msg); devc->req_sent_at = g_get_monotonic_time(); if (serial_write(serial, msg, sizeof(msg)) == -1) { return SR_ERR; } devc->response_pending = TRUE; return SR_OK; } /** Request status from 2x multimeter (msg 3). * @param[in] power_on Try to power on powered off multimeter by sending additional messages. */ int req_stat14(const struct sr_dev_inst *sdi, gboolean power_on) { struct dev_context *devc; struct sr_serial_dev_inst *serial; uint8_t params[9]; uint8_t msg[42]; if (!sdi || !(devc = sdi->priv) || !(serial = sdi->conn)) return SR_ERR; memset(params, 0, sizeof(params)); params[0] = 0; devc->cmd_idx = 0; create_cmd_14(devc->addr, 3, params, msg); if (power_on) { sr_info("Write some data and wait 3s to turn on powered off device..."); if (serial_write(serial, msg, sizeof(msg)) < 0) return SR_ERR; g_usleep(1*1000*1000); if (serial_write(serial, msg, sizeof(msg)) < 0) return SR_ERR; g_usleep(1*1000*1000); if (serial_write(serial, msg, sizeof(msg)) < 0) return SR_ERR; g_usleep(1*1000*1000); serial_flush(serial); } /* Write message and wait for reply */ devc->req_sent_at = g_get_monotonic_time(); if (serial_write(serial, msg, sizeof(msg)) == -1) { return SR_ERR; } devc->response_pending = TRUE; return SR_OK; } /** Decode model in "send mode". * * @param[in] mcode Model code. * @return Model code. */ SR_PRIV int gmc_decode_model_sm(uint8_t mcode) { if (mcode > 0xf) { sr_err("decode_model(%d): Model code 0..15 expected!", mcode); return METRAHIT_NONE; } switch(mcode) { case 0x04: /* 0100b */ return METRAHIT_12S; case 0x08: /* 1000b */ return METRAHIT_13S14A; case 0x09: /* 1001b */ return METRAHIT_14S; case 0x0A: /* 1010b */ return METRAHIT_15S; case 0x0B: /* 1011b */ return METRAHIT_16S; case 0x06: /* 0110b (undocumented by GMC!) */ return METRAHIT_16I; case 0x0D: /* 1101b */ return METRAHIT_18S; case 0x02: /* 0010b */ return METRAHIT_22SM; case 0x03: /* 0011b */ return METRAHIT_23S; case 0x0f: /* 1111b */ return METRAHIT_24S; case 0x05: /* 0101b */ return METRAHIT_25S; case 0x01: /* 0001b */ return METRAHIT_26SM; case 0x0c: /* 1100b */ return METRAHIT_28S; case 0x0e: /* 1110b */ return METRAHIT_29S; default: sr_err("Unknown model code %d!", mcode); return METRAHIT_NONE; } } /** Convert GMC model code in bidirectional mode to sigrok-internal one. * * @param[in] mcode Model code. * * @return Model code. */ SR_PRIV int gmc_decode_model_bd(uint8_t mcode) { switch (mcode & 0x1f) { case 2: if (mcode & 0x20) return METRAHIT_22M; else return METRAHIT_22S; case 3: return METRAHIT_23S; case 4: return METRAHIT_24S; case 5: return METRAHIT_25S; case 1: if (mcode & 0x20) return METRAHIT_26M; else return METRAHIT_26S; case 12: return METRAHIT_28S; case 14: return METRAHIT_29S; default: sr_err("Unknown model code %d!", mcode); return METRAHIT_NONE; } } /** Convert sigrok-internal model code to string. * * @param[in] mcode Model code. * * @return Model code string. */ SR_PRIV const char *gmc_model_str(enum model mcode) { switch (mcode) { case METRAHIT_NONE: return "-uninitialized model variable-"; case METRAHIT_12S: return "METRAHit 12S"; case METRAHIT_13S14A: return "METRAHit 13S/14A"; case METRAHIT_14S: return "METRAHit 14S"; case METRAHIT_15S: return "METRAHit 15S"; case METRAHIT_16S: return "METRAHit 16S"; case METRAHIT_16I: return "METRAHit 16I"; case METRAHIT_18S: return "METRAHit 18S"; case METRAHIT_22SM: return "METRAHit 22S/M"; case METRAHIT_22S: return "METRAHit 22S"; case METRAHIT_22M: return "METRAHit 22M"; case METRAHIT_23S: return "METRAHit 23S"; case METRAHIT_24S: return "METRAHit 24S"; case METRAHIT_25S: return "METRAHit 25S"; case METRAHIT_26SM: return "METRAHit 26S/M"; case METRAHIT_26S: return "METRAHit 26S"; case METRAHIT_26M: return "METRAHit 26M"; case METRAHIT_28S: return "METRAHit 28S"; case METRAHIT_29S: return "METRAHit 29S"; default: return "Unknown model code"; } } /** @copydoc sr_dev_driver.config_set */ SR_PRIV int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; uint8_t params[9]; uint8_t msg[42]; (void)cg; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; if (!(devc = sdi->priv)) { sr_err("sdi->priv was NULL."); return SR_ERR_BUG; } switch (key) { case SR_CONF_POWER_OFF: if (devc->model < METRAHIT_2X) return SR_ERR_NA; if (!g_variant_get_boolean(data)) return SR_ERR; sr_info("Powering device off."); memset(params, 0, sizeof(params)); params[0] = 5; params[1] = 5; create_cmd_14(devc->addr, 6, params, msg); if (serial_write(sdi->conn, msg, sizeof(msg)) == -1) return SR_ERR; else g_usleep(2000000); /* Wait to ensure transfer before interface switched off. */ break; case SR_CONF_LIMIT_MSEC: if (g_variant_get_uint64(data) == 0) { sr_err("LIMIT_MSEC can't be 0."); return SR_ERR; } devc->limit_msec = g_variant_get_uint64(data); sr_dbg("Setting time limit to %" PRIu64 "ms.", devc->limit_msec); break; case SR_CONF_LIMIT_SAMPLES: devc->limit_samples = g_variant_get_uint64(data); sr_dbg("Setting sample limit to %" PRIu64 ".", devc->limit_samples); break; default: return SR_ERR_NA; } return SR_OK; }