/* * This file is part of the libsigrok project. * * Copyright (C) 2010-2012 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "protocol.h" #define VENDOR_NAME "ZEROPLUS" #define USB_INTERFACE 0 #define USB_CONFIGURATION 1 #define NUM_TRIGGER_STAGES 4 #define TRIGGER_TYPE "01" #define PACKET_SIZE 2048 /* ?? */ //#define ZP_EXPERIMENTAL struct zp_model { uint16_t vid; uint16_t pid; char *model_name; unsigned int channels; unsigned int sample_depth; /* In Ksamples/channel */ unsigned int max_sampling_freq; }; /* * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the * same 128K sample depth. */ static const struct zp_model zeroplus_models[] = { {0x0c12, 0x7002, "LAP-16128U", 16, 128, 200}, {0x0c12, 0x7009, "LAP-C(16064)", 16, 64, 100}, {0x0c12, 0x700a, "LAP-C(16128)", 16, 128, 200}, {0x0c12, 0x700b, "LAP-C(32128)", 32, 128, 200}, {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200}, {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200}, {0x0c12, 0x700e, "LAP-C(16032)", 16, 32, 100}, {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200}, { 0, 0, 0, 0, 0, 0 } }; static const int32_t hwcaps[] = { SR_CONF_LOGIC_ANALYZER, SR_CONF_SAMPLERATE, SR_CONF_CAPTURE_RATIO, SR_CONF_VOLTAGE_THRESHOLD, SR_CONF_LIMIT_SAMPLES, }; /* * ZEROPLUS LAP-C (16032) numbers the 16 probes A0-A7 and B0-B7. * We currently ignore other untested/unsupported devices here. */ static const char *probe_names[] = { "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7", "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7", NULL, }; SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info; static struct sr_dev_driver *di = &zeroplus_logic_cube_driver_info; /* * The hardware supports more samplerates than these, but these are the * options hardcoded into the vendor's Windows GUI. */ static const uint64_t samplerates_100[] = { SR_HZ(100), SR_HZ(500), SR_KHZ(1), SR_KHZ(5), SR_KHZ(25), SR_KHZ(50), SR_KHZ(100), SR_KHZ(200), SR_KHZ(400), SR_KHZ(800), SR_MHZ(1), SR_MHZ(10), SR_MHZ(25), SR_MHZ(50), SR_MHZ(80), SR_MHZ(100), }; const uint64_t samplerates_200[] = { SR_HZ(100), SR_HZ(500), SR_KHZ(1), SR_KHZ(5), SR_KHZ(25), SR_KHZ(50), SR_KHZ(100), SR_KHZ(200), SR_KHZ(400), SR_KHZ(800), SR_MHZ(1), SR_MHZ(10), SR_MHZ(25), SR_MHZ(50), SR_MHZ(80), SR_MHZ(100), SR_MHZ(150), SR_MHZ(200), }; static int dev_close(struct sr_dev_inst *sdi); #if 0 static int configure_probes(const struct sr_dev_inst *sdi) { struct dev_context *devc; const struct sr_probe *probe; const GSList *l; int probe_bit, stage, i; char *tc; /* Note: sdi and sdi->priv are non-NULL, the caller checked this. */ devc = sdi->priv; devc->probe_mask = 0; for (i = 0; i < NUM_TRIGGER_STAGES; i++) { devc->trigger_mask[i] = 0; devc->trigger_value[i] = 0; } stage = -1; for (l = sdi->probes; l; l = l->next) { probe = (struct sr_probe *)l->data; if (probe->enabled == FALSE) continue; probe_bit = 1 << (probe->index); devc->probe_mask |= probe_bit; if (probe->trigger) { stage = 0; for (tc = probe->trigger; *tc; tc++) { devc->trigger_mask[stage] |= probe_bit; if (*tc == '1') devc->trigger_value[stage] |= probe_bit; stage++; if (stage > NUM_TRIGGER_STAGES) return SR_ERR; } } } return SR_OK; } #endif static int configure_probes(const struct sr_dev_inst *sdi) { struct dev_context *devc; const GSList *l; const struct sr_probe *probe; char *tc; int type; /* Note: sdi and sdi->priv are non-NULL, the caller checked this. */ devc = sdi->priv; for (l = sdi->probes; l; l = l->next) { probe = (struct sr_probe *)l->data; if (probe->enabled == FALSE) continue; if ((tc = probe->trigger)) { switch (*tc) { case '1': type = TRIGGER_HIGH; break; case '0': type = TRIGGER_LOW; break; #if 0 case 'r': type = TRIGGER_POSEDGE; break; case 'f': type = TRIGGER_NEGEDGE; break; case 'c': type = TRIGGER_ANYEDGE; break; #endif default: return SR_ERR; } analyzer_add_trigger(probe->index, type); devc->trigger = 1; } } return SR_OK; } SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate) { int i; for (i = 0; ARRAY_SIZE(samplerates_200); i++) if (samplerate == samplerates_200[i]) break; if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) { sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate); return SR_ERR_ARG; } sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate); if (samplerate >= SR_MHZ(1)) analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ); else if (samplerate >= SR_KHZ(1)) analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ); else analyzer_set_freq(samplerate, FREQ_SCALE_HZ); devc->cur_samplerate = samplerate; return SR_OK; } static int init(struct sr_context *sr_ctx) { return std_init(sr_ctx, di, LOG_PREFIX); } static GSList *scan(GSList *options) { struct sr_dev_inst *sdi; struct sr_probe *probe; struct drv_context *drvc; struct dev_context *devc; const struct zp_model *prof; struct libusb_device_descriptor des; libusb_device **devlist; GSList *devices; int ret, devcnt, i, j; (void)options; drvc = di->priv; devices = NULL; /* Find all ZEROPLUS analyzers and add them to device list. */ devcnt = 0; libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */ for (i = 0; devlist[i]; i++) { ret = libusb_get_device_descriptor(devlist[i], &des); if (ret != 0) { sr_err("Failed to get device descriptor: %s.", libusb_error_name(ret)); continue; } prof = NULL; for (j = 0; j < zeroplus_models[j].vid; j++) { if (des.idVendor == zeroplus_models[j].vid && des.idProduct == zeroplus_models[j].pid) { prof = &zeroplus_models[j]; } } /* Skip if the device was not found. */ if (!prof) continue; sr_info("Found ZEROPLUS %s.", prof->model_name); /* Register the device with libsigrok. */ if (!(sdi = sr_dev_inst_new(devcnt, SR_ST_INACTIVE, VENDOR_NAME, prof->model_name, NULL))) { sr_err("%s: sr_dev_inst_new failed", __func__); return NULL; } sdi->driver = di; /* Allocate memory for our private driver context. */ if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) { sr_err("Device context malloc failed."); return NULL; } sdi->priv = devc; devc->prof = prof; devc->num_channels = prof->channels; #ifdef ZP_EXPERIMENTAL devc->max_sample_depth = 128 * 1024; devc->max_samplerate = 200; #else devc->max_sample_depth = prof->sample_depth * 1024; devc->max_samplerate = prof->max_sampling_freq; #endif devc->max_samplerate *= SR_MHZ(1); devc->memory_size = MEMORY_SIZE_8K; // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES); /* Fill in probelist according to this device's profile. */ for (j = 0; j < devc->num_channels; j++) { if (!(probe = sr_probe_new(j, SR_PROBE_LOGIC, TRUE, probe_names[j]))) return NULL; sdi->probes = g_slist_append(sdi->probes, probe); } devices = g_slist_append(devices, sdi); drvc->instances = g_slist_append(drvc->instances, sdi); sdi->inst_type = SR_INST_USB; sdi->conn = sr_usb_dev_inst_new( libusb_get_bus_number(devlist[i]), libusb_get_device_address(devlist[i]), NULL); devcnt++; } libusb_free_device_list(devlist, 1); return devices; } static GSList *dev_list(void) { return ((struct drv_context *)(di->priv))->instances; } static int dev_open(struct sr_dev_inst *sdi) { struct dev_context *devc; struct drv_context *drvc; struct sr_usb_dev_inst *usb; libusb_device **devlist, *dev; struct libusb_device_descriptor des; int device_count, ret, i; drvc = di->priv; usb = sdi->conn; if (!(devc = sdi->priv)) { sr_err("%s: sdi->priv was NULL", __func__); return SR_ERR_ARG; } device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); if (device_count < 0) { sr_err("Failed to retrieve device list."); return SR_ERR; } dev = NULL; for (i = 0; i < device_count; i++) { if ((ret = libusb_get_device_descriptor(devlist[i], &des))) { sr_err("Failed to get device descriptor: %s.", libusb_error_name(ret)); continue; } if (libusb_get_bus_number(devlist[i]) == usb->bus && libusb_get_device_address(devlist[i]) == usb->address) { dev = devlist[i]; break; } } if (!dev) { sr_err("Device on bus %d address %d disappeared!", usb->bus, usb->address); return SR_ERR; } if (!(ret = libusb_open(dev, &(usb->devhdl)))) { sdi->status = SR_ST_ACTIVE; sr_info("Opened device %d on %d.%d interface %d.", sdi->index, usb->bus, usb->address, USB_INTERFACE); } else { sr_err("Failed to open device: %s.", libusb_error_name(ret)); return SR_ERR; } ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION); if (ret < 0) { sr_err("Unable to set USB configuration %d: %s.", USB_CONFIGURATION, libusb_error_name(ret)); return SR_ERR; } ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE); if (ret != 0) { sr_err("Unable to claim interface: %s.", libusb_error_name(ret)); return SR_ERR; } /* Set default configuration after power on. */ if (analyzer_read_status(usb->devhdl) == 0) analyzer_configure(usb->devhdl); analyzer_reset(usb->devhdl); analyzer_initialize(usb->devhdl); //analyzer_set_memory_size(MEMORY_SIZE_512K); // analyzer_set_freq(g_freq, g_freq_scale); analyzer_set_trigger_count(1); // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger) // * get_memory_size(g_memory_size)) / 100) >> 2); #if 0 if (g_double_mode == 1) analyzer_set_compression(COMPRESSION_DOUBLE); else if (g_compression == 1) analyzer_set_compression(COMPRESSION_ENABLE); else #endif analyzer_set_compression(COMPRESSION_NONE); if (devc->cur_samplerate == 0) { /* Samplerate hasn't been set. Default to 1MHz. */ analyzer_set_freq(1, FREQ_SCALE_MHZ); devc->cur_samplerate = SR_MHZ(1); } if (devc->cur_threshold == 0) set_voltage_threshold(devc, 1.5); return SR_OK; } static int dev_close(struct sr_dev_inst *sdi) { struct sr_usb_dev_inst *usb; usb = sdi->conn; if (!usb->devhdl) return SR_ERR; sr_info("Closing device %d on %d.%d interface %d.", sdi->index, usb->bus, usb->address, USB_INTERFACE); libusb_release_interface(usb->devhdl, USB_INTERFACE); libusb_reset_device(usb->devhdl); libusb_close(usb->devhdl); usb->devhdl = NULL; sdi->status = SR_ST_INACTIVE; return SR_OK; } static int cleanup(void) { return std_dev_clear(di, NULL); } static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; (void)cg; switch (id) { case SR_CONF_SAMPLERATE: if (sdi) { devc = sdi->priv; *data = g_variant_new_uint64(devc->cur_samplerate); sr_spew("Returning samplerate: %" PRIu64 "Hz.", devc->cur_samplerate); } else return SR_ERR_ARG; break; case SR_CONF_CAPTURE_RATIO: if (sdi) { devc = sdi->priv; *data = g_variant_new_uint64(devc->capture_ratio); } else return SR_ERR_ARG; break; case SR_CONF_VOLTAGE_THRESHOLD: if (sdi) { GVariant *range[2]; devc = sdi->priv; range[0] = g_variant_new_double(devc->cur_threshold); range[1] = g_variant_new_double(devc->cur_threshold); *data = g_variant_new_tuple(range, 2); } else return SR_ERR_ARG; break; default: return SR_ERR_NA; } return SR_OK; } static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; gdouble low, high; (void)cg; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; if (!(devc = sdi->priv)) { sr_err("%s: sdi->priv was NULL", __func__); return SR_ERR_ARG; } switch (id) { case SR_CONF_SAMPLERATE: return zp_set_samplerate(devc, g_variant_get_uint64(data)); case SR_CONF_LIMIT_SAMPLES: return set_limit_samples(devc, g_variant_get_uint64(data)); case SR_CONF_CAPTURE_RATIO: return set_capture_ratio(devc, g_variant_get_uint64(data)); case SR_CONF_VOLTAGE_THRESHOLD: g_variant_get(data, "(dd)", &low, &high); return set_voltage_threshold(devc, (low + high) / 2.0); default: return SR_ERR_NA; } return SR_OK; } static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; GVariant *gvar, *grange[2]; GVariantBuilder gvb; double v; GVariant *range[2]; (void)cg; switch (key) { case SR_CONF_DEVICE_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t)); break; case SR_CONF_SAMPLERATE: devc = sdi->priv; g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); if (devc->prof->max_sampling_freq == 100) { gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates_100, ARRAY_SIZE(samplerates_100), sizeof(uint64_t)); } else if (devc->prof->max_sampling_freq == 200) { gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates_200, ARRAY_SIZE(samplerates_200), sizeof(uint64_t)); } else { sr_err("Internal error: Unknown max. samplerate: %d.", devc->prof->max_sampling_freq); return SR_ERR_ARG; } g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_TRIGGER_TYPE: *data = g_variant_new_string(TRIGGER_TYPE); break; case SR_CONF_VOLTAGE_THRESHOLD: g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY); for (v = -6.0; v <= 6.0; v += 0.1) { range[0] = g_variant_new_double(v); range[1] = g_variant_new_double(v); gvar = g_variant_new_tuple(range, 2); g_variant_builder_add_value(&gvb, gvar); } *data = g_variant_builder_end(&gvb); break; case SR_CONF_LIMIT_SAMPLES: if (!sdi) return SR_ERR_ARG; devc = sdi->priv; grange[0] = g_variant_new_uint64(0); grange[1] = g_variant_new_uint64(devc->max_sample_depth); *data = g_variant_new_tuple(grange, 2); break; default: return SR_ERR_NA; } return SR_OK; } static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *devc; struct sr_usb_dev_inst *usb; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; unsigned int samples_read; int res; unsigned int packet_num, n; unsigned char *buf; unsigned int status; unsigned int stop_address; unsigned int now_address; unsigned int trigger_address; unsigned int trigger_offset; unsigned int triggerbar; unsigned int ramsize_trigger; unsigned int memory_size; unsigned int valid_samples; unsigned int discard; int trigger_now; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; if (!(devc = sdi->priv)) { sr_err("%s: sdi->priv was NULL", __func__); return SR_ERR_ARG; } if (configure_probes(sdi) != SR_OK) { sr_err("Failed to configure probes."); return SR_ERR; } usb = sdi->conn; set_triggerbar(devc); /* Push configured settings to device. */ analyzer_configure(usb->devhdl); analyzer_start(usb->devhdl); sr_info("Waiting for data."); analyzer_wait_data(usb->devhdl); status = analyzer_read_status(usb->devhdl); stop_address = analyzer_get_stop_address(usb->devhdl); now_address = analyzer_get_now_address(usb->devhdl); trigger_address = analyzer_get_trigger_address(usb->devhdl); triggerbar = analyzer_get_triggerbar_address(); ramsize_trigger = analyzer_get_ramsize_trigger_address(); n = get_memory_size(devc->memory_size); memory_size = n / 4; sr_info("Status = 0x%x.", status); sr_info("Stop address = 0x%x.", stop_address); sr_info("Now address = 0x%x.", now_address); sr_info("Trigger address = 0x%x.", trigger_address); sr_info("Triggerbar address = 0x%x.", triggerbar); sr_info("Ramsize trigger = 0x%x.", ramsize_trigger); sr_info("Memory size = 0x%x.", memory_size); /* Send header packet to the session bus. */ std_session_send_df_header(cb_data, LOG_PREFIX); /* Check for empty capture */ if ((status & STATUS_READY) && !stop_address) { packet.type = SR_DF_END; sr_session_send(cb_data, &packet); return SR_OK; } if (!(buf = g_try_malloc(PACKET_SIZE))) { sr_err("Packet buffer malloc failed."); return SR_ERR_MALLOC; } /* Check if the trigger is in the samples we are throwing away */ trigger_now = now_address == trigger_address || ((now_address + 1) % memory_size) == trigger_address; /* * STATUS_READY doesn't clear until now_address advances past * addr 0, but for our logic, clear it in that case */ if (!now_address) status &= ~STATUS_READY; analyzer_read_start(usb->devhdl); /* Calculate how much data to discard */ discard = 0; if (status & STATUS_READY) { /* * We haven't wrapped around, we need to throw away data from * our current position to the end of the buffer. * Additionally, the first two samples captured are always * bogus. */ discard += memory_size - now_address + 2; now_address = 2; } /* If we have more samples than we need, discard them */ valid_samples = (stop_address - now_address) % memory_size; if (valid_samples > ramsize_trigger + triggerbar) { discard += valid_samples - (ramsize_trigger + triggerbar); now_address += valid_samples - (ramsize_trigger + triggerbar); } sr_info("Need to discard %d samples.", discard); /* Calculate how far in the trigger is */ if (trigger_now) trigger_offset = 0; else trigger_offset = (trigger_address - now_address) % memory_size; /* Recalculate the number of samples available */ valid_samples = (stop_address - now_address) % memory_size; /* Send the incoming transfer to the session bus. */ samples_read = 0; for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) { unsigned int len; unsigned int buf_offset; res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE); sr_info("Tried to read %d bytes, actually read %d bytes.", PACKET_SIZE, res); if (discard >= PACKET_SIZE / 4) { discard -= PACKET_SIZE / 4; continue; } len = PACKET_SIZE - discard * 4; buf_offset = discard * 4; discard = 0; /* Check if we've read all the samples */ if (samples_read + len / 4 >= valid_samples) len = (valid_samples - samples_read) * 4; if (!len) break; if (samples_read < trigger_offset && samples_read + len / 4 > trigger_offset) { /* Send out samples remaining before trigger */ packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = (trigger_offset - samples_read) * 4; logic.unitsize = 4; logic.data = buf + buf_offset; sr_session_send(cb_data, &packet); len -= logic.length; samples_read += logic.length / 4; buf_offset += logic.length; } if (samples_read == trigger_offset) { /* Send out trigger */ packet.type = SR_DF_TRIGGER; packet.payload = NULL; sr_session_send(cb_data, &packet); } /* Send out data (or data after trigger) */ packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = len; logic.unitsize = 4; logic.data = buf + buf_offset; sr_session_send(cb_data, &packet); samples_read += len / 4; } analyzer_read_stop(usb->devhdl); g_free(buf); packet.type = SR_DF_END; sr_session_send(cb_data, &packet); return SR_OK; } /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */ static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *devc; struct sr_usb_dev_inst *usb; struct sr_datafeed_packet packet; packet.type = SR_DF_END; sr_session_send(cb_data, &packet); if (!(devc = sdi->priv)) { sr_err("%s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } usb = sdi->conn; analyzer_reset(usb->devhdl); /* TODO: Need to cancel and free any queued up transfers. */ return SR_OK; } SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = { .name = "zeroplus-logic-cube", .longname = "ZEROPLUS Logic Cube LAP-C series", .api_version = 1, .init = init, .cleanup = cleanup, .scan = scan, .dev_list = dev_list, .dev_clear = NULL, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .priv = NULL, };