/* * This file is part of the sigrok project. * * Copyright (C) 2010-2012 Bert Vermeulen * Copyright (C) 2011 HÃ¥vard Espeland * Copyright (C) 2011 Daniel Ribeiro * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include "sigrok.h" #define DEFAULT_BPL_BITS 64 #define DEFAULT_BPL_HEX 192 #define DEFAULT_BPL_ASCII 74 enum outputmode { MODE_BITS = 1, MODE_HEX, MODE_ASCII, }; struct context { unsigned int num_enabled_probes; int samples_per_line; unsigned int unitsize; int line_offset; int linebuf_len; char *probelist[65]; char *linebuf; int spl_cnt; uint8_t *linevalues; char *header; int mark_trigger; // struct sr_analog_sample *prevsample; enum outputmode mode; }; static void flush_linebufs(struct context *ctx, char *outbuf) { static int max_probename_len = 0; int len, i; if (ctx->linebuf[0] == 0) return; if (max_probename_len == 0) { /* First time through... */ for (i = 0; ctx->probelist[i]; i++) { len = strlen(ctx->probelist[i]); if (len > max_probename_len) max_probename_len = len; } } for (i = 0; ctx->probelist[i]; i++) { sprintf(outbuf + strlen(outbuf), "%*s:%s\n", max_probename_len, ctx->probelist[i], ctx->linebuf + i * ctx->linebuf_len); } /* Mark trigger with a ^ character. */ if (ctx->mark_trigger != -1) { int space_offset = ctx->mark_trigger / 8; if (ctx->mode == MODE_ASCII) space_offset = 0; sprintf(outbuf + strlen(outbuf), "T:%*s^\n", ctx->mark_trigger + space_offset, ""); } memset(ctx->linebuf, 0, i * ctx->linebuf_len); } static int init(struct sr_output *o, int default_spl, enum outputmode mode) { struct context *ctx; struct sr_probe *probe; GSList *l; uint64_t samplerate; int num_probes; char *samplerate_s; if (!(ctx = g_try_malloc0(sizeof(struct context)))) { sr_err("analog out: %s: ctx malloc failed", __func__); return SR_ERR_MALLOC; } o->internal = ctx; ctx->num_enabled_probes = 0; for (l = o->device->probes; l; l = l->next) { probe = l->data; if (!probe->enabled) continue; ctx->probelist[ctx->num_enabled_probes++] = probe->name; } ctx->probelist[ctx->num_enabled_probes] = 0; ctx->unitsize = sizeof(struct sr_analog_sample) + (ctx->num_enabled_probes * sizeof(struct sr_analog_probe)); ctx->line_offset = 0; ctx->spl_cnt = 0; ctx->mark_trigger = -1; ctx->mode = mode; if (o->param && o->param[0]) { ctx->samples_per_line = strtoul(o->param, NULL, 10); if (ctx->samples_per_line < 1) return SR_ERR; } else ctx->samples_per_line = default_spl; if (!(ctx->header = g_try_malloc(512))) { g_free(ctx); sr_err("analog out: %s: ctx->header malloc failed", __func__); return SR_ERR_MALLOC; } snprintf(ctx->header, 511, "%s\n", PACKAGE_STRING); num_probes = g_slist_length(o->device->probes); if (o->device->plugin && sr_dev_has_hwcap(o->device, SR_HWCAP_SAMPLERATE)) { samplerate = *((uint64_t *) o->device->plugin->get_device_info( o->device->plugin_index, SR_DI_CUR_SAMPLERATE)); if (!(samplerate_s = sr_samplerate_string(samplerate))) { g_free(ctx->header); g_free(ctx); return SR_ERR; } snprintf(ctx->header + strlen(ctx->header), 511 - strlen(ctx->header), "Acquisition with %d/%d probes at %s\n", ctx->num_enabled_probes, num_probes, samplerate_s); g_free(samplerate_s); } ctx->linebuf_len = ctx->samples_per_line * 2 + 4; if (!(ctx->linebuf = g_try_malloc0(num_probes * ctx->linebuf_len))) { g_free(ctx->header); g_free(ctx); sr_err("analog out: %s: ctx->linebuf malloc failed", __func__); return SR_ERR_MALLOC; } if (!(ctx->linevalues = g_try_malloc0(num_probes))) { g_free(ctx->header); g_free(ctx); sr_err("analog out: %s: ctx->linevalues malloc failed", __func__); return SR_ERR_MALLOC; } return SR_OK; } static int event(struct sr_output *o, int event_type, char **data_out, uint64_t *length_out) { struct context *ctx; int outsize; char *outbuf; ctx = o->internal; switch (event_type) { case SR_DF_TRIGGER: ctx->mark_trigger = ctx->spl_cnt; *data_out = NULL; *length_out = 0; break; case SR_DF_END: outsize = ctx->num_enabled_probes * (ctx->samples_per_line + 20) + 512; if (!(outbuf = g_try_malloc0(outsize))) { sr_err("analog out: %s: outbuf malloc failed", __func__); return SR_ERR_MALLOC; } flush_linebufs(ctx, outbuf); *data_out = outbuf; *length_out = strlen(outbuf); g_free(o->internal); o->internal = NULL; break; default: *data_out = NULL; *length_out = 0; break; } return SR_OK; } static int init_bits(struct sr_output *o) { return init(o, DEFAULT_BPL_BITS, MODE_BITS); } static int data_bits(struct sr_output *o, const char *data_in, uint64_t length_in, char **data_out, uint64_t *length_out) { struct context *ctx; unsigned int outsize, offset, p; int max_linelen; struct sr_analog_sample *sample; char *outbuf, c; ctx = o->internal; max_linelen = SR_MAX_PROBENAME_LEN + 3 + ctx->samples_per_line + ctx->samples_per_line / 8; /* * Calculate space needed for probes. Set aside 512 bytes for * extra output, e.g. trigger. */ outsize = 512 + (1 + (length_in / ctx->unitsize) / ctx->samples_per_line) * (ctx->num_enabled_probes * max_linelen); if (!(outbuf = g_try_malloc0(outsize + 1))) { sr_err("analog out: %s: outbuf malloc failed", __func__); return SR_ERR_MALLOC; } outbuf[0] = '\0'; if (ctx->header) { /* The header is still here, this must be the first packet. */ strncpy(outbuf, ctx->header, outsize); g_free(ctx->header); ctx->header = NULL; /* Ensure first transition. */ // memcpy(&ctx->prevsample, data_in, ctx->unitsize); // ctx->prevsample = ~ctx->prevsample; } if (length_in >= ctx->unitsize) { for (offset = 0; offset <= length_in - ctx->unitsize; offset += ctx->unitsize) { sample = (struct sr_analog_sample *) (data_in + offset); for (p = 0; p < ctx->num_enabled_probes; p++) { int val = sample->probes[p].val; int res = sample->probes[p].res; if (res == 1) c = '0' + (val & ((1 << res) - 1)); else /* * Scale analog resolution down so it * fits 25 letters */ c = 'A' + (((val & ((1 << res) - 1)) / (res * res)) / 10); ctx->linebuf[p * ctx->linebuf_len + ctx->line_offset] = c; } ctx->line_offset++; ctx->spl_cnt++; /* Add a space every 8th bit. */ if ((ctx->spl_cnt & 7) == 0) { for (p = 0; p < ctx->num_enabled_probes; p++) ctx->linebuf[p * ctx->linebuf_len + ctx->line_offset] = ' '; ctx->line_offset++; } /* End of line. */ if (ctx->spl_cnt >= ctx->samples_per_line) { flush_linebufs(ctx, outbuf); ctx->line_offset = ctx->spl_cnt = 0; ctx->mark_trigger = -1; } } } else { sr_info("short buffer (length_in=%" PRIu64 ")", length_in); } *data_out = outbuf; *length_out = strlen(outbuf); return SR_OK; } #if 0 static int init_hex(struct sr_output *o) { return init(o, DEFAULT_BPL_HEX, MODE_HEX); } static int data_hex(struct sr_output *o, const char *data_in, uint64_t length_in, char **data_out, uint64_t *length_out) { struct context *ctx; unsigned int outsize, offset, p; int max_linelen; uint64_t sample; char *outbuf; ctx = o->internal; max_linelen = SR_MAX_PROBENAME_LEN + 3 + ctx->samples_per_line + ctx->samples_per_line / 2; outsize = length_in / ctx->unitsize * ctx->num_enabled_probes / ctx->samples_per_line * max_linelen + 512; if (!(outbuf = g_try_malloc0(outsize + 1))) { sr_err("analog out: %s: outbuf malloc failed", __func__); return SR_ERR_MALLOC; } outbuf[0] = '\0'; if (ctx->header) { /* The header is still here, this must be the first packet. */ strncpy(outbuf, ctx->header, outsize); g_free(ctx->header); ctx->header = NULL; } ctx->line_offset = 0; for (offset = 0; offset <= length_in - ctx->unitsize; offset += ctx->unitsize) { memcpy(&sample, data_in + offset, ctx->unitsize); for (p = 0; p < ctx->num_enabled_probes; p++) { ctx->linevalues[p] <<= 1; if (sample & ((uint64_t) 1 << p)) ctx->linevalues[p] |= 1; sprintf(ctx->linebuf + (p * ctx->linebuf_len) + ctx->line_offset, "%.2x", ctx->linevalues[p]); } ctx->spl_cnt++; /* Add a space after every complete hex byte. */ if ((ctx->spl_cnt & 7) == 0) { for (p = 0; p < ctx->num_enabled_probes; p++) ctx->linebuf[p * ctx->linebuf_len + ctx->line_offset + 2] = ' '; ctx->line_offset += 3; } /* End of line. */ if (ctx->spl_cnt >= ctx->samples_per_line) { flush_linebufs(ctx, outbuf); ctx->line_offset = ctx->spl_cnt = 0; } } *data_out = outbuf; *length_out = strlen(outbuf); return SR_OK; } static int init_ascii(struct sr_output *o) { return init(o, DEFAULT_BPL_ASCII, MODE_ASCII); } static int data_ascii(struct sr_output *o, const char *data_in, uint64_t length_in, char **data_out, uint64_t *length_out) { struct context *ctx; unsigned int outsize, offset, p; int max_linelen; uint64_t sample; char *outbuf; ctx = o->internal; max_linelen = SR_MAX_PROBENAME_LEN + 3 + ctx->samples_per_line + ctx->samples_per_line / 8; /* * Calculate space needed for probes. Set aside 512 bytes for * extra output, e.g. trigger. */ outsize = 512 + (1 + (length_in / ctx->unitsize) / ctx->samples_per_line) * (ctx->num_enabled_probes * max_linelen); if (!(outbuf = g_try_malloc0(outsize + 1))) { sr_err("analog out: %s: outbuf malloc failed", __func__); return SR_ERR_MALLOC; } outbuf[0] = '\0'; if (ctx->header) { /* The header is still here, this must be the first packet. */ strncpy(outbuf, ctx->header, outsize); g_free(ctx->header); ctx->header = NULL; } if (length_in >= ctx->unitsize) { for (offset = 0; offset <= length_in - ctx->unitsize; offset += ctx->unitsize) { memcpy(&sample, data_in + offset, ctx->unitsize); char tmpval[ctx->num_enabled_probes]; for (p = 0; p < ctx->num_enabled_probes; p++) { uint64_t curbit = (sample & ((uint64_t) 1 << p)); uint64_t prevbit = (ctx->prevsample & ((uint64_t) 1 << p)); if (curbit < prevbit && ctx->line_offset > 0) { ctx->linebuf[p * ctx->linebuf_len + ctx->line_offset-1] = '\\'; } if (curbit > prevbit) { tmpval[p] = '/'; } else { if (curbit) tmpval[p] = '"'; else tmpval[p] = '.'; } } /* End of line. */ if (ctx->spl_cnt >= ctx->samples_per_line) { flush_linebufs(ctx, outbuf); ctx->line_offset = ctx->spl_cnt = 0; ctx->mark_trigger = -1; } for (p = 0; p < ctx->num_enabled_probes; p++) { ctx->linebuf[p * ctx->linebuf_len + ctx->line_offset] = tmpval[p]; } ctx->line_offset++; ctx->spl_cnt++; ctx->prevsample = sample; } } else { sr_info("short buffer (length_in=%" PRIu64 ")", length_in); } *data_out = outbuf; *length_out = strlen(outbuf); return SR_OK; } #endif SR_PRIV struct sr_output_format output_analog_bits = { .id = "analog_bits", .description = "Bits (takes argument, default 64)", .df_type = SR_DF_ANALOG, .init = init_bits, .data = data_bits, .event = event, }; #if 0 struct sr_output_format output_analog_hex = { .id = "analog_hex", .description = "Hexadecimal (takes argument, default 192)", .df_type = SR_DF_ANALOG, .init = init_hex, .data = data_hex, .event = event, }; struct sr_output_format output_analog_ascii = { .id = "analog_ascii", .description = "ASCII (takes argument, default 74)", .df_type = SR_DF_ANALOG, .init = init_ascii, .data = data_ascii, .event = event, }; #endif