/* * This file is part of the libsigrok project. * * Copyright (C) 2013 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "protocol.h" /* * Logic level thresholds. * * For each of the two channel groups (1-4 and 5-9), the logic level * threshold can be set independently. * * The threshold can be set to values that are usable for systems with * different voltage levels, e.g. for 1.8V or 3.3V systems. * * The actual threshold value is always the middle of the values below. * E.g. for a system voltage level of 1.8V, the threshold is at 0.9V. That * means that values <= 0.9V are considered to be a logic 0/low, and * values > 0.9V are considered to be a logic 1/high. * * - 1.2V system: threshold = 0.6V * - 1.5V system: threshold = 0.75V * - 1.8V system: threshold = 0.9V * - 2.8V system: threshold = 1.4V * - 3.3V system: threshold = 1.65V */ #define THRESHOLD_1_2V_SYSTEM 0x2e #define THRESHOLD_1_5V_SYSTEM 0x39 #define THRESHOLD_1_8V_SYSTEM 0x45 #define THRESHOLD_2_8V_SYSTEM 0x6c #define THRESHOLD_3_3V_SYSTEM 0x7f static int scanaplus_write(struct dev_context *devc, uint8_t *buf, int size) { int i, bytes_written; GString *s; /* Note: Caller checks devc, devc->ftdic, buf, size. */ s = g_string_sized_new(100); g_string_printf(s, "Writing %d bytes: ", size); for (i = 0; i < size; i++) g_string_append_printf(s, "0x%02x ", buf[i]); sr_spew("%s", s->str); g_string_free(s, TRUE); bytes_written = ftdi_write_data(devc->ftdic, buf, size); if (bytes_written < 0) { sr_err("Failed to write FTDI data (%d): %s.", bytes_written, ftdi_get_error_string(devc->ftdic)); } else if (bytes_written != size) { sr_err("FTDI write error, only %d/%d bytes written: %s.", bytes_written, size, ftdi_get_error_string(devc->ftdic)); } return bytes_written; } SR_PRIV int scanaplus_close(struct dev_context *devc) { int ret; /* Note: Caller checks devc and devc->ftdic. */ if ((ret = ftdi_usb_close(devc->ftdic)) < 0) { sr_err("Failed to close FTDI device (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); return SR_ERR; } return SR_OK; } static void scanaplus_uncompress_block(struct dev_context *devc, uint64_t num_bytes) { uint64_t i, j; uint8_t num_samples, low, high; for (i = 0; i < num_bytes; i += 2) { num_samples = devc->compressed_buf[i + 0] >> 1; low = devc->compressed_buf[i + 0] & (1 << 0); high = devc->compressed_buf[i + 1]; for (j = 0; j < num_samples; j++) { devc->sample_buf[devc->bytes_received++] = high; devc->sample_buf[devc->bytes_received++] = low; } } } static void send_samples(struct dev_context *devc, uint64_t samples_to_send) { struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; sr_spew("Sending %" PRIu64 " samples.", samples_to_send); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = samples_to_send * 2; logic.unitsize = 2; /* We need 2 bytes for 9 probes. */ logic.data = devc->sample_buf; sr_session_send(devc->cb_data, &packet); devc->samples_sent += samples_to_send; devc->bytes_received -= samples_to_send * 2; } SR_PRIV int scanaplus_get_device_id(struct dev_context *devc) { int ret; uint16_t val1, val2; /* FTDI EEPROM indices 16+17 contain the 3 device ID bytes. */ if ((ret = ftdi_read_eeprom_location(devc->ftdic, 16, &val1)) < 0) { sr_err("Failed to read EEPROM index 16 (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); return SR_ERR; } if ((ret = ftdi_read_eeprom_location(devc->ftdic, 17, &val2)) < 0) { sr_err("Failed to read EEPROM index 17 (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); return SR_ERR; } /* * Note: Bit 7 of the three bytes must not be used, apparently. * * Even though the three bits can be either 0 or 1 (we've seen both * in actual ScanaPLUS devices), the device ID as sent to the FPGA * has bit 7 of each byte zero'd out. * * It is unknown whether bit 7 of these bytes has any meaning, * whether it's used somewhere, or whether it can be simply ignored. */ devc->devid[0] = ((val1 >> 0) & 0xff) & ~(1 << 7); devc->devid[1] = ((val1 >> 8) & 0xff) & ~(1 << 7); devc->devid[2] = ((val2 >> 0) & 0xff) & ~(1 << 7); return SR_OK; } static int scanaplus_clear_device_id(struct dev_context *devc) { uint8_t buf[2]; buf[0] = 0x8c; buf[1] = 0x00; if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; buf[0] = 0x8e; buf[1] = 0x00; if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; buf[0] = 0x8f; buf[1] = 0x00; if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; return SR_OK; } static int scanaplus_send_device_id(struct dev_context *devc) { uint8_t buf[2]; buf[0] = 0x8c; buf[1] = devc->devid[0]; if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; buf[0] = 0x8e; buf[1] = devc->devid[1]; if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; buf[0] = 0x8f; buf[1] = devc->devid[2]; if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; return SR_OK; } SR_PRIV int scanaplus_init(struct dev_context *devc) { int i; uint8_t buf[8]; buf[0] = 0x88; buf[1] = 0x41; if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; buf[0] = 0x89; buf[1] = 0x64; buf[2] = 0x8a; buf[3] = 0x64; if (scanaplus_write(devc, (uint8_t *)&buf, 4) < 0) return SR_ERR; buf[0] = 0x88; buf[1] = 0x41; if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; buf[0] = 0x88; buf[1] = 0x40; if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; buf[0] = 0x8d; buf[1] = 0x01; buf[2] = 0x8d; buf[3] = 0x05; buf[4] = 0x8d; buf[5] = 0x01; buf[6] = 0x8d; buf[7] = 0x02; if (scanaplus_write(devc, (uint8_t *)&buf, 8) < 0) return SR_ERR; for (i = 0; i < 57; i++) { buf[0] = 0x8d; buf[1] = 0x06; if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; buf[0] = 0x8d; buf[1] = 0x02; if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; } if (scanaplus_send_device_id(devc) < 0) return SR_ERR; buf[0] = 0x88; buf[1] = 0x40; if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; return SR_OK; } SR_PRIV int scanaplus_start_acquisition(struct dev_context *devc) { uint8_t buf[4]; /* Threshold and differential probe settings not yet implemented. */ buf[0] = 0x89; buf[1] = 0x7f; /* Logic level threshold for probes 1-4. */ buf[2] = 0x8a; buf[3] = 0x7f; /* Logic level threshold for probes 5-9. */ if (scanaplus_write(devc, (uint8_t *)&buf, 4) < 0) return SR_ERR; buf[0] = 0x88; buf[1] = 0x40; /* Special config of probes 5/6 and 7/8. */ /* 0x40: normal, 0x50: ch56 diff, 0x48: ch78 diff, 0x58: ch5678 diff */ if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0) return SR_ERR; if (scanaplus_clear_device_id(devc) < 0) return SR_ERR; if (scanaplus_send_device_id(devc) < 0) return SR_ERR; return SR_OK; } SR_PRIV int scanaplus_receive_data(int fd, int revents, void *cb_data) { int bytes_read; struct sr_dev_inst *sdi; struct dev_context *devc; uint64_t max, n; (void)fd; (void)revents; if (!(sdi = cb_data)) return TRUE; if (!(devc = sdi->priv)) return TRUE; if (!devc->ftdic) return TRUE; /* Get a block of data. */ bytes_read = ftdi_read_data(devc->ftdic, devc->compressed_buf, COMPRESSED_BUF_SIZE); if (bytes_read < 0) { sr_err("Failed to read FTDI data (%d): %s.", bytes_read, ftdi_get_error_string(devc->ftdic)); sdi->driver->dev_acquisition_stop(sdi, sdi); return FALSE; } if (bytes_read == 0) { sr_spew("Received 0 bytes, nothing to do."); return TRUE; } /* * After a ScanaPLUS acquisition starts, a bunch of samples will be * returned as all-zero, no matter which signals are actually present * on the probes. This is probably due to the FPGA reconfiguring some * of its internal state/config during this time. * * As far as we know there is apparently no way for the PC-side to * know when this "reconfiguration" starts or ends. The FTDI chip * will return all-zero "dummy" samples during this time, which is * indistinguishable from actual all-zero samples. * * We currently simply ignore the first 64kB of data after an * acquisition starts. Empirical tests have shown that the * "reconfigure" time is a lot less than that usually. */ if (devc->compressed_bytes_ignored < COMPRESSED_BUF_SIZE) { /* Ignore the first 64kB of data of every acquisition. */ sr_spew("Ignoring first 64kB chunk of data."); devc->compressed_bytes_ignored += COMPRESSED_BUF_SIZE; return TRUE; } /* TODO: Handle bytes_read which is not a multiple of 2? */ scanaplus_uncompress_block(devc, bytes_read); n = devc->samples_sent + (devc->bytes_received / 2); max = (SR_MHZ(100) / 1000) * devc->limit_msec; if (devc->limit_samples && (n >= devc->limit_samples)) { send_samples(devc, devc->limit_samples - devc->samples_sent); sr_info("Requested number of samples reached."); sdi->driver->dev_acquisition_stop(sdi, cb_data); return TRUE; } else if (devc->limit_msec && (n >= max)) { send_samples(devc, max - devc->samples_sent); sr_info("Requested time limit reached."); sdi->driver->dev_acquisition_stop(sdi, cb_data); return TRUE; } else { send_samples(devc, devc->bytes_received / 2); } return TRUE; }