/* * This file is part of the libsigrok project. * * Copyright (C) 2014 Bert Vermeulen * Copyright (C) 2015 Google, Inc. * (Written by Alexandru Gagniuc for Google, Inc.) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "protocol.h" #define CH_IDX(x) (1 << x) #define FREQ_DC_ONLY {0, 0, 0} const char *pps_vendors[][2] = { { "RIGOL TECHNOLOGIES", "Rigol" }, { "HEWLETT-PACKARD", "HP" }, { "PHILIPS", "Philips" }, { "Chroma ATE", "Chroma" }, }; const char *get_vendor(const char *raw_vendor) { unsigned int i; for (i = 0; i < ARRAY_SIZE(pps_vendors); i++) { if (!strcasecmp(raw_vendor, pps_vendors[i][0])) return pps_vendors[i][1]; } return raw_vendor; } static const uint32_t devopts_none[] = { }; /* Chroma 61600 series AC source */ static const uint32_t chroma_61604_devopts[] = { SR_CONF_CONTINUOUS | SR_CONF_SET, }; static const uint32_t chroma_61604_devopts_cg[] = { SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET, SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET, SR_CONF_OUTPUT_VOLTAGE | SR_CONF_GET, SR_CONF_OUTPUT_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_OUTPUT_FREQUENCY | SR_CONF_GET, SR_CONF_OUTPUT_FREQUENCY_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_OUTPUT_CURRENT | SR_CONF_GET, SR_CONF_OUTPUT_ENABLED | SR_CONF_GET | SR_CONF_SET, }; const struct channel_spec chroma_61604_ch[] = { { "1", { 0, 300, 0.1 }, { 0, 16, 0.1 }, { 1.0, 1000.0, 0.01 } }, }; const struct channel_group_spec chroma_61604_cg[] = { { "1", CH_IDX(0), PPS_OVP | PPS_OCP }, }; const struct scpi_command chroma_61604_cmd[] = { { SCPI_CMD_REMOTE, "SYST:REM" }, { SCPI_CMD_LOCAL, "SYST:LOC" }, { SCPI_CMD_GET_MEAS_VOLTAGE, ":FETC:VOLT:ACDC?" }, { SCPI_CMD_GET_MEAS_FREQUENCY, ":FETC:FREQ?" }, { SCPI_CMD_GET_MEAS_CURRENT, ":FETC:CURR:AC?" }, { SCPI_CMD_GET_MEAS_POWER, ":FETC:POW:AC?" }, { SCPI_CMD_GET_VOLTAGE_TARGET, ":SOUR:VOLT:AC?" }, { SCPI_CMD_SET_VOLTAGE_TARGET, ":SOUR:VOLT:AC %.1f" }, { SCPI_CMD_GET_FREQUENCY_TARGET, ":SOUR:FREQ?" }, { SCPI_CMD_SET_FREQUENCY_TARGET, ":SOUR:FREQ %.2f" }, { SCPI_CMD_GET_OUTPUT_ENABLED, ":OUTP?" }, { SCPI_CMD_SET_OUTPUT_ENABLE, ":OUTP ON" }, { SCPI_CMD_SET_OUTPUT_DISABLE, ":OUTP OFF" }, { SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":SOUR:VOLT:LIM:AC?" }, { SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":SOUR:VOLT:LIM:AC %.1f" }, /* This is not a current limit mode. It is overcurrent protection */ { SCPI_CMD_GET_OVER_CURRENT_PROTECTION_THRESHOLD, ":SOUR:CURR:LIM?" }, { SCPI_CMD_SET_OVER_CURRENT_PROTECTION_THRESHOLD, ":SOUR:CURR:LIM %.2f" }, }; /* Rigol DP800 series */ static const uint32_t rigol_dp800_devopts[] = { SR_CONF_CONTINUOUS | SR_CONF_SET, SR_CONF_OVER_TEMPERATURE_PROTECTION | SR_CONF_GET | SR_CONF_SET, }; static const uint32_t rigol_dp800_devopts_cg[] = { SR_CONF_OUTPUT_REGULATION | SR_CONF_GET, SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED | SR_CONF_GET | SR_CONF_SET, SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE | SR_CONF_GET, SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET, SR_CONF_OVER_CURRENT_PROTECTION_ENABLED | SR_CONF_GET | SR_CONF_SET, SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE | SR_CONF_GET, SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET, SR_CONF_OUTPUT_VOLTAGE | SR_CONF_GET, SR_CONF_OUTPUT_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_OUTPUT_CURRENT | SR_CONF_GET, SR_CONF_OUTPUT_CURRENT_LIMIT | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_OUTPUT_ENABLED | SR_CONF_GET | SR_CONF_SET, }; const struct channel_spec rigol_dp821a_ch[] = { { "1", { 0, 60, 0.001 }, { 0, 1, 0.0001 }, FREQ_DC_ONLY }, { "2", { 0, 8, 0.001 }, { 0, 10, 0.001 }, FREQ_DC_ONLY }, }; const struct channel_spec rigol_dp831_ch[] = { { "1", { 0, 8, 0.001 }, { 0, 5, 0.0003 }, FREQ_DC_ONLY }, { "2", { 0, 30, 0.001 }, { 0, 2, 0.0001 }, FREQ_DC_ONLY }, { "3", { 0, -30, 0.001 }, { 0, 2, 0.0001 }, FREQ_DC_ONLY }, }; const struct channel_spec rigol_dp832_ch[] = { { "1", { 0, 30, 0.001 }, { 0, 3, 0.001 }, FREQ_DC_ONLY }, { "2", { 0, 30, 0.001 }, { 0, 3, 0.001 }, FREQ_DC_ONLY }, { "3", { 0, 5, 0.001 }, { 0, 3, 0.001 }, FREQ_DC_ONLY }, }; const struct channel_group_spec rigol_dp820_cg[] = { { "1", CH_IDX(0), PPS_OVP | PPS_OCP }, { "2", CH_IDX(1), PPS_OVP | PPS_OCP }, }; const struct channel_group_spec rigol_dp830_cg[] = { { "1", CH_IDX(0), PPS_OVP | PPS_OCP }, { "2", CH_IDX(1), PPS_OVP | PPS_OCP }, { "3", CH_IDX(2), PPS_OVP | PPS_OCP }, }; const struct scpi_command rigol_dp800_cmd[] = { { SCPI_CMD_REMOTE, "SYST:REMOTE" }, { SCPI_CMD_LOCAL, "SYST:LOCAL" }, { SCPI_CMD_BEEPER, "SYST:BEEP:STAT?" }, { SCPI_CMD_BEEPER_ENABLE, "SYST:BEEP:STAT ON" }, { SCPI_CMD_BEEPER_DISABLE, "SYST:BEEP:STAT OFF" }, { SCPI_CMD_SELECT_CHANNEL, ":INST:NSEL %s" }, { SCPI_CMD_GET_MEAS_VOLTAGE, ":MEAS:VOLT?" }, { SCPI_CMD_GET_MEAS_CURRENT, ":MEAS:CURR?" }, { SCPI_CMD_GET_MEAS_POWER, ":MEAS:POWE?" }, { SCPI_CMD_GET_VOLTAGE_TARGET, ":SOUR:VOLT?" }, { SCPI_CMD_SET_VOLTAGE_TARGET, ":SOUR:VOLT %.6f" }, { SCPI_CMD_GET_CURRENT_LIMIT, ":SOUR:CURR?" }, { SCPI_CMD_SET_CURRENT_LIMIT, ":SOUR:CURR %.6f" }, { SCPI_CMD_GET_OUTPUT_ENABLED, ":OUTP?" }, { SCPI_CMD_SET_OUTPUT_ENABLE, ":OUTP ON" }, { SCPI_CMD_SET_OUTPUT_DISABLE, ":OUTP OFF" }, { SCPI_CMD_GET_OUTPUT_REGULATION, ":OUTP:MODE?" }, { SCPI_CMD_GET_OVER_TEMPERATURE_PROTECTION, ":SYST:OTP?" }, { SCPI_CMD_SET_OVER_TEMPERATURE_PROTECTION_ENABLE, ":SYST:OTP ON" }, { SCPI_CMD_SET_OVER_TEMPERATURE_PROTECTION_DISABLE, ":SYST:OTP OFF" }, { SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ENABLED, ":OUTP:OVP?" }, { SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_ENABLE, ":OUTP:OVP ON" }, { SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_DISABLE, ":OUTP:OVP OFF" }, { SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ACTIVE, ":OUTP:OVP:QUES?" }, { SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":OUTP:OVP:VAL?" }, { SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":OUTP:OVP:VAL %.6f" }, { SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ENABLED, ":OUTP:OCP?" }, { SCPI_CMD_SET_OVER_CURRENT_PROTECTION_ENABLE, ":OUTP:OCP:STAT ON" }, { SCPI_CMD_SET_OVER_CURRENT_PROTECTION_DISABLE, ":OUTP:OCP:STAT OFF" }, { SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ACTIVE, ":OUTP:OCP:QUES?" }, { SCPI_CMD_GET_OVER_CURRENT_PROTECTION_THRESHOLD, ":OUTP:OCP:VAL?" }, { SCPI_CMD_SET_OVER_CURRENT_PROTECTION_THRESHOLD, ":OUTP:OCP:VAL %.6f" }, }; /* HP 663xx series */ static const uint32_t hp_6632b_devopts[] = { SR_CONF_CONTINUOUS | SR_CONF_SET, SR_CONF_OUTPUT_ENABLED | SR_CONF_GET | SR_CONF_SET, SR_CONF_OUTPUT_VOLTAGE | SR_CONF_GET, SR_CONF_OUTPUT_CURRENT | SR_CONF_GET, SR_CONF_OUTPUT_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_OUTPUT_CURRENT_LIMIT | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, }; const struct channel_spec hp_6632b_ch[] = { { "1", { 0, 20.475, 0.005 }, { 0, 5.1188, 0.00132 }, FREQ_DC_ONLY }, }; const struct channel_group_spec hp_6632b_cg[] = { { "1", CH_IDX(0), 0 }, }; const struct scpi_command hp_6632b_cmd[] = { { SCPI_CMD_GET_OUTPUT_ENABLED, "OUTP:STAT?" }, { SCPI_CMD_SET_OUTPUT_ENABLE, "OUTP:STAT ON" }, { SCPI_CMD_SET_OUTPUT_DISABLE, "OUTP:STAT OFF" }, { SCPI_CMD_GET_MEAS_VOLTAGE, ":MEAS:VOLT?" }, { SCPI_CMD_GET_MEAS_CURRENT, ":MEAS:CURR?" }, { SCPI_CMD_GET_VOLTAGE_TARGET, ":SOUR:VOLT?" }, { SCPI_CMD_SET_VOLTAGE_TARGET, ":SOUR:VOLT %.6f" }, { SCPI_CMD_GET_CURRENT_LIMIT, ":SOUR:CURR?" }, { SCPI_CMD_SET_CURRENT_LIMIT, ":SOUR:CURR %.6f" }, }; /* Philips/Fluke PM2800 series */ static const uint32_t philips_pm2800_devopts[] = { SR_CONF_CONTINUOUS | SR_CONF_SET, }; static const uint32_t philips_pm2800_devopts_cg[] = { SR_CONF_OUTPUT_ENABLED | SR_CONF_GET | SR_CONF_SET, SR_CONF_OUTPUT_VOLTAGE | SR_CONF_GET, SR_CONF_OUTPUT_VOLTAGE_TARGET | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_OUTPUT_CURRENT | SR_CONF_GET, SR_CONF_OUTPUT_CURRENT_LIMIT | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE | SR_CONF_GET, SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD | SR_CONF_GET | SR_CONF_SET, SR_CONF_OVER_CURRENT_PROTECTION_ENABLED | SR_CONF_GET | SR_CONF_SET, SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE | SR_CONF_GET, SR_CONF_OUTPUT_REGULATION | SR_CONF_GET, }; enum philips_pm2800_modules { PM2800_MOD_30V_10A = 1, PM2800_MOD_60V_5A, PM2800_MOD_60V_10A, PM2800_MOD_8V_15A, PM2800_MOD_60V_2A, PM2800_MOD_120V_1A, }; static const struct philips_pm2800_module_spec { /* Min, max, programming resolution. */ float voltage[3]; float current[3]; } philips_pm2800_module_specs[] = { /* Autoranging modules. */ [PM2800_MOD_30V_10A] = { { 0, 30, 0.0075 }, { 0, 10, 0.0025 } }, [PM2800_MOD_60V_5A] = { { 0, 60, 0.015 }, { 0, 5, 0.00125 } }, [PM2800_MOD_60V_10A] = { { 0, 60, 0.015 }, { 0, 10, 0.0025 } }, /* Linear modules. */ [PM2800_MOD_8V_15A] = { { 0, 8, 0.002 }, { -15, 15, 0.00375 } }, [PM2800_MOD_60V_2A] = { { 0, 60, 0.015 }, { -2, 2, 0.0005 } }, [PM2800_MOD_120V_1A] = { { 0, 120, 0.030 }, { -1, 1, 0.00025 } }, }; static const struct philips_pm2800_model { unsigned int chassis; unsigned int num_modules; unsigned int set; unsigned int modules[3]; } philips_pm2800_matrix[] = { /* Autoranging chassis. */ { 1, 1, 0, { PM2800_MOD_30V_10A, 0, 0 } }, { 1, 1, 1, { PM2800_MOD_60V_5A, 0, 0 } }, { 1, 2, 0, { PM2800_MOD_30V_10A, PM2800_MOD_30V_10A, 0 } }, { 1, 2, 1, { PM2800_MOD_60V_5A, PM2800_MOD_60V_5A, 0 } }, { 1, 2, 2, { PM2800_MOD_30V_10A, PM2800_MOD_60V_5A, 0 } }, { 1, 2, 3, { PM2800_MOD_30V_10A, PM2800_MOD_60V_10A, 0 } }, { 1, 2, 4, { PM2800_MOD_60V_5A, PM2800_MOD_60V_10A, 0 } }, { 1, 3, 0, { PM2800_MOD_30V_10A, PM2800_MOD_30V_10A, PM2800_MOD_30V_10A } }, { 1, 3, 1, { PM2800_MOD_60V_5A, PM2800_MOD_60V_5A, PM2800_MOD_60V_5A } }, { 1, 3, 2, { PM2800_MOD_30V_10A, PM2800_MOD_30V_10A, PM2800_MOD_60V_5A } }, { 1, 3, 3, { PM2800_MOD_30V_10A, PM2800_MOD_60V_5A, PM2800_MOD_60V_5A } }, /* Linear chassis. */ { 3, 1, 0, { PM2800_MOD_60V_2A, 0, 0 } }, { 3, 1, 1, { PM2800_MOD_120V_1A, 0, 0 } }, { 3, 1, 2, { PM2800_MOD_8V_15A, 0, 0 } }, { 3, 2, 0, { PM2800_MOD_60V_2A, 0, 0 } }, { 3, 2, 1, { PM2800_MOD_120V_1A, 0, 0 } }, { 3, 2, 2, { PM2800_MOD_60V_2A, PM2800_MOD_120V_1A, 0 } }, { 3, 2, 3, { PM2800_MOD_8V_15A, PM2800_MOD_8V_15A, 0 } }, }; static const char *philips_pm2800_names[] = { "1", "2", "3" }; static int philips_pm2800_probe_channels(struct sr_dev_inst *sdi, struct sr_scpi_hw_info *hw_info, struct channel_spec **channels, unsigned int *num_channels, struct channel_group_spec **channel_groups, unsigned int *num_channel_groups) { const struct philips_pm2800_model *model; const struct philips_pm2800_module_spec *spec; unsigned int chassis, num_modules, set, module, m, i; (void)sdi; /* * The model number as reported by *IDN? looks like e.g. PM2813/11, * Where "PM28" is fixed, followed by the chassis code (1 = autoranging, * 3 = linear series) and the number of modules: 1-3 for autoranging, * 1-2 for linear. * After the slash, the first digit denotes the module set. The * digit after that denotes front (5) or rear (1) binding posts. */ chassis = hw_info->model[4] - 0x30; num_modules = hw_info->model[5] - 0x30; set = hw_info->model[7] - 0x30; for (m = 0; m < ARRAY_SIZE(philips_pm2800_matrix); m++) { model = &philips_pm2800_matrix[m]; if (model->chassis == chassis && model->num_modules == num_modules && model->set == set) break; } if (m == ARRAY_SIZE(philips_pm2800_matrix)) { sr_dbg("Model %s not found in matrix.", hw_info->model); return SR_ERR; } sr_dbg("Found %d output channel%s:", num_modules, num_modules > 1 ? "s" : ""); *channels = g_malloc0(sizeof(struct channel_spec) * num_modules); *channel_groups = g_malloc0(sizeof(struct channel_group_spec) * num_modules); for (i = 0; i < num_modules; i++) { module = model->modules[i]; spec = &philips_pm2800_module_specs[module]; sr_dbg("output %d: %.0f - %.0fV, %.0f - %.0fA", i + 1, spec->voltage[0], spec->voltage[1], spec->current[0], spec->current[1]); (*channels)[i].name = (char *)philips_pm2800_names[i]; memcpy(&((*channels)[i].voltage), spec, sizeof(float) * 6); (*channel_groups)[i].name = (char *)philips_pm2800_names[i]; (*channel_groups)[i].channel_index_mask = 1 << i; (*channel_groups)[i].features = PPS_OTP | PPS_OVP | PPS_OCP; } *num_channels = *num_channel_groups = num_modules; return SR_OK; } const struct scpi_command philips_pm2800_cmd[] = { { SCPI_CMD_SELECT_CHANNEL, ":INST:NSEL %s" }, { SCPI_CMD_GET_MEAS_VOLTAGE, ":MEAS:VOLT?" }, { SCPI_CMD_GET_MEAS_CURRENT, ":MEAS:CURR?" }, { SCPI_CMD_GET_VOLTAGE_TARGET, ":SOUR:VOLT?" }, { SCPI_CMD_SET_VOLTAGE_TARGET, ":SOUR:VOLT %.6f" }, { SCPI_CMD_GET_CURRENT_LIMIT, ":SOUR:CURR?" }, { SCPI_CMD_SET_CURRENT_LIMIT, ":SOUR:CURR %.6f" }, { SCPI_CMD_GET_OUTPUT_ENABLED, ":OUTP?" }, { SCPI_CMD_SET_OUTPUT_ENABLE, ":OUTP ON" }, { SCPI_CMD_SET_OUTPUT_DISABLE, ":OUTP OFF" }, { SCPI_CMD_GET_OUTPUT_REGULATION, ":SOUR:FUNC:MODE?" }, { SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_ACTIVE, ":SOUR:VOLT:PROT:TRIP?" }, { SCPI_CMD_GET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":SOUR:VOLT:PROT:LEV?" }, { SCPI_CMD_SET_OVER_VOLTAGE_PROTECTION_THRESHOLD, ":SOUR:VOLT:PROT:LEV %.6f" }, { SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ENABLED, ":SOUR:CURR:PROT:STAT?" }, { SCPI_CMD_SET_OVER_CURRENT_PROTECTION_ENABLE, ":SOUR:CURR:PROT:STAT ON" }, { SCPI_CMD_SET_OVER_CURRENT_PROTECTION_DISABLE, ":SOUR:CURR:PROT:STAT OFF" }, { SCPI_CMD_GET_OVER_CURRENT_PROTECTION_ACTIVE, ":SOUR:CURR:PROT:TRIP?" }, }; SR_PRIV const struct scpi_pps pps_profiles[] = { /* Chroma 61604 */ { "Chroma", "61604", 0, ARRAY_AND_SIZE(chroma_61604_devopts), ARRAY_AND_SIZE(chroma_61604_devopts_cg), ARRAY_AND_SIZE(chroma_61604_ch), ARRAY_AND_SIZE(chroma_61604_cg), ARRAY_AND_SIZE(chroma_61604_cmd), .probe_channels = NULL, }, /* HP 6632B */ { "HP", "6632B", 0, ARRAY_AND_SIZE(hp_6632b_devopts), ARRAY_AND_SIZE(devopts_none), ARRAY_AND_SIZE(hp_6632b_ch), ARRAY_AND_SIZE(hp_6632b_cg), ARRAY_AND_SIZE(hp_6632b_cmd), .probe_channels = NULL, }, /* Rigol DP800 series */ { "Rigol", "^DP821A$", PPS_OTP, ARRAY_AND_SIZE(rigol_dp800_devopts), ARRAY_AND_SIZE(rigol_dp800_devopts_cg), ARRAY_AND_SIZE(rigol_dp821a_ch), ARRAY_AND_SIZE(rigol_dp820_cg), ARRAY_AND_SIZE(rigol_dp800_cmd), .probe_channels = NULL, }, { "Rigol", "^DP831A$", PPS_OTP, ARRAY_AND_SIZE(rigol_dp800_devopts), ARRAY_AND_SIZE(rigol_dp800_devopts_cg), ARRAY_AND_SIZE(rigol_dp831_ch), ARRAY_AND_SIZE(rigol_dp830_cg), ARRAY_AND_SIZE(rigol_dp800_cmd), .probe_channels = NULL, }, { "Rigol", "^(DP832|DP832A)$", PPS_OTP, ARRAY_AND_SIZE(rigol_dp800_devopts), ARRAY_AND_SIZE(rigol_dp800_devopts_cg), ARRAY_AND_SIZE(rigol_dp832_ch), ARRAY_AND_SIZE(rigol_dp830_cg), ARRAY_AND_SIZE(rigol_dp800_cmd), .probe_channels = NULL, }, /* Philips/Fluke PM2800 series */ { "Philips", "^PM28[13][123]/[01234]{1,2}$", 0, ARRAY_AND_SIZE(philips_pm2800_devopts), ARRAY_AND_SIZE(philips_pm2800_devopts_cg), NULL, 0, NULL, 0, ARRAY_AND_SIZE(philips_pm2800_cmd), philips_pm2800_probe_channels, }, }; SR_PRIV unsigned int num_pps_profiles = ARRAY_SIZE(pps_profiles);