/* * This file is part of the libsigrok project. * * Copyright (C) 2011-2015 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include "protocol.h" static const uint32_t drvopts[] = { SR_CONF_LOGIC_ANALYZER, }; static const uint32_t scanopts[] = { SR_CONF_CONN, }; static const uint32_t devopts[] = { SR_CONF_LIMIT_MSEC | SR_CONF_SET, SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST, SR_CONF_CONN | SR_CONF_GET, SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_TRIGGER_MATCH | SR_CONF_LIST, }; static const int32_t trigger_matches[] = { SR_TRIGGER_ZERO, SR_TRIGGER_ONE, SR_TRIGGER_RISING, SR_TRIGGER_FALLING, }; static void clear_helper(void *priv) { struct dev_context *devc; devc = priv; ftdi_free(devc->ftdic); g_free(devc->final_buf); } static int dev_clear(const struct sr_dev_driver *di) { return std_dev_clear_with_callback(di, clear_helper); } static int add_device(int model, struct libusb_device_descriptor *des, const char *serial_num, const char *connection_id, libusb_device *usbdev, GSList **devices) { int ret; unsigned int i; struct sr_dev_inst *sdi; struct dev_context *devc; ret = SR_OK; /* Allocate memory for our private device context. */ devc = g_malloc0(sizeof(struct dev_context)); /* Set some sane defaults. */ devc->prof = &cv_profiles[model]; devc->ftdic = NULL; /* Will be set in the open() API call. */ devc->cur_samplerate = 0; /* Set later (different for LA8/LA16). */ devc->limit_msec = 0; devc->limit_samples = 0; memset(devc->mangled_buf, 0, BS); devc->final_buf = NULL; devc->trigger_pattern = 0x0000; /* Irrelevant, see trigger_mask. */ devc->trigger_mask = 0x0000; /* All channels: "don't care". */ devc->trigger_edgemask = 0x0000; /* All channels: "state triggered". */ devc->trigger_found = 0; devc->done = 0; devc->block_counter = 0; devc->divcount = 0; devc->usb_vid = des->idVendor; devc->usb_pid = des->idProduct; memset(devc->samplerates, 0, sizeof(uint64_t) * 255); /* Allocate memory where we'll store the de-mangled data. */ if (!(devc->final_buf = g_try_malloc(SDRAM_SIZE))) { sr_err("Failed to allocate memory for sample buffer."); ret = SR_ERR_MALLOC; goto err_free_devc; } /* We now know the device, set its max. samplerate as default. */ devc->cur_samplerate = devc->prof->max_samplerate; /* Register the device with libsigrok. */ sdi = g_malloc0(sizeof(struct sr_dev_inst)); sdi->status = SR_ST_INACTIVE; sdi->vendor = g_strdup("ChronoVu"); sdi->model = g_strdup(devc->prof->modelname); sdi->serial_num = g_strdup(serial_num); sdi->connection_id = g_strdup(connection_id); sdi->conn = sr_usb_dev_inst_new(libusb_get_bus_number(usbdev), libusb_get_device_address(usbdev), NULL); sdi->priv = devc; for (i = 0; i < devc->prof->num_channels; i++) sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE, cv_channel_names[i]); *devices = g_slist_append(*devices, sdi); if (ret == SR_OK) return SR_OK; err_free_devc: g_free(devc); return ret; } static GSList *scan(struct sr_dev_driver *di, GSList *options) { int i, ret, model; struct drv_context *drvc; GSList *devices, *conn_devices, *l; struct sr_usb_dev_inst *usb; struct sr_config *src; struct libusb_device_descriptor des; libusb_device **devlist; struct libusb_device_handle *hdl; const char *conn; char product[64], serial_num[64], connection_id[64]; drvc = di->context; conn = NULL; for (l = options; l; l = l->next) { src = l->data; switch (src->key) { case SR_CONF_CONN: conn = g_variant_get_string(src->data, NULL); break; } } if (conn) conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn); else conn_devices = NULL; devices = NULL; libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); for (i = 0; devlist[i]; i++) { if (conn) { for (l = conn_devices; l; l = l->next) { usb = l->data; if (usb->bus == libusb_get_bus_number(devlist[i]) && usb->address == libusb_get_device_address(devlist[i])) break; } if (!l) /* This device matched none of the ones that * matched the conn specification. */ continue; } libusb_get_device_descriptor(devlist[i], &des); if ((ret = libusb_open(devlist[i], &hdl)) < 0) continue; if (des.iProduct == 0) { product[0] = '\0'; } else if ((ret = libusb_get_string_descriptor_ascii(hdl, des.iProduct, (unsigned char *)product, sizeof(product))) < 0) { sr_warn("Failed to get product string descriptor: %s.", libusb_error_name(ret)); continue; } if (des.iSerialNumber == 0) { serial_num[0] = '\0'; } else if ((ret = libusb_get_string_descriptor_ascii(hdl, des.iSerialNumber, (unsigned char *)serial_num, sizeof(serial_num))) < 0) { sr_warn("Failed to get serial number string descriptor: %s.", libusb_error_name(ret)); continue; } usb_get_port_path(devlist[i], connection_id, sizeof(connection_id)); libusb_close(hdl); if (!strcmp(product, "ChronoVu LA8")) { model = 0; } else if (!strcmp(product, "ChronoVu LA16")) { model = 1; } else { sr_spew("Unknown iProduct string '%s'.", product); continue; } sr_dbg("Found %s (%04x:%04x, %d.%d, %s).", product, des.idVendor, des.idProduct, libusb_get_bus_number(devlist[i]), libusb_get_device_address(devlist[i]), connection_id); if ((ret = add_device(model, &des, serial_num, connection_id, devlist[i], &devices)) < 0) { sr_dbg("Failed to add device: %d.", ret); } } libusb_free_device_list(devlist, 1); g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free); return std_scan_complete(di, devices); } static int dev_open(struct sr_dev_inst *sdi) { struct dev_context *devc; int ret; devc = sdi->priv; /* Allocate memory for the FTDI context and initialize it. */ if (!(devc->ftdic = ftdi_new())) { sr_err("Failed to initialize libftdi."); return SR_ERR; } sr_dbg("Opening %s device (%04x:%04x).", devc->prof->modelname, devc->usb_vid, devc->usb_pid); /* Open the device. */ if ((ret = ftdi_usb_open_desc(devc->ftdic, devc->usb_vid, devc->usb_pid, devc->prof->iproduct, NULL)) < 0) { sr_err("Failed to open FTDI device (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); goto err_ftdi_free; } /* Purge RX/TX buffers in the FTDI chip. */ if ((ret = ftdi_usb_purge_buffers(devc->ftdic)) < 0) { sr_err("Failed to purge FTDI buffers (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); goto err_ftdi_free; } /* Enable flow control in the FTDI chip. */ if ((ret = ftdi_setflowctrl(devc->ftdic, SIO_RTS_CTS_HS)) < 0) { sr_err("Failed to enable FTDI flow control (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); goto err_ftdi_free; } /* Wait 100ms. */ g_usleep(100 * 1000); return SR_OK; err_ftdi_free: ftdi_free(devc->ftdic); /* Close device (if open), free FTDI context. */ devc->ftdic = NULL; return SR_ERR; } static int dev_close(struct sr_dev_inst *sdi) { int ret; struct dev_context *devc; devc = sdi->priv; if (!devc->ftdic) return SR_ERR_BUG; if ((ret = ftdi_usb_close(devc->ftdic)) < 0) sr_err("Failed to close FTDI device (%d): %s.", ret, ftdi_get_error_string(devc->ftdic)); return (ret == 0) ? SR_OK : SR_ERR; } static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; struct sr_usb_dev_inst *usb; char str[128]; (void)cg; switch (key) { case SR_CONF_CONN: if (!sdi || !(usb = sdi->conn)) return SR_ERR_ARG; snprintf(str, 128, "%d.%d", usb->bus, usb->address); *data = g_variant_new_string(str); break; case SR_CONF_SAMPLERATE: if (!sdi) return SR_ERR_BUG; devc = sdi->priv; *data = g_variant_new_uint64(devc->cur_samplerate); break; default: return SR_ERR_NA; } return SR_OK; } static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; (void)cg; devc = sdi->priv; switch (key) { case SR_CONF_SAMPLERATE: if (cv_set_samplerate(sdi, g_variant_get_uint64(data)) < 0) return SR_ERR; break; case SR_CONF_LIMIT_MSEC: if (g_variant_get_uint64(data) == 0) return SR_ERR_ARG; devc->limit_msec = g_variant_get_uint64(data); break; case SR_CONF_LIMIT_SAMPLES: if (g_variant_get_uint64(data) == 0) return SR_ERR_ARG; devc->limit_samples = g_variant_get_uint64(data); break; default: return SR_ERR_NA; } return SR_OK; } static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { GVariant *gvar, *grange[2]; GVariantBuilder gvb; struct dev_context *devc; (void)cg; switch (key) { case SR_CONF_SCAN_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t)); break; case SR_CONF_DEVICE_OPTIONS: if (!sdi) *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t)); else *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, devopts, ARRAY_SIZE(devopts), sizeof(uint32_t)); break; case SR_CONF_SAMPLERATE: if (!sdi) return SR_ERR_BUG; devc = sdi->priv; cv_fill_samplerates_if_needed(sdi); g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), devc->samplerates, ARRAY_SIZE(devc->samplerates), sizeof(uint64_t)); g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_LIMIT_SAMPLES: if (!sdi || !sdi->priv || !(devc = sdi->priv) || !devc->prof) return SR_ERR_BUG; grange[0] = g_variant_new_uint64(0); if (devc->prof->model == CHRONOVU_LA8) grange[1] = g_variant_new_uint64(MAX_NUM_SAMPLES); else grange[1] = g_variant_new_uint64(MAX_NUM_SAMPLES / 2); *data = g_variant_new_tuple(grange, 2); break; case SR_CONF_TRIGGER_MATCH: if (!sdi || !sdi->priv || !(devc = sdi->priv) || !devc->prof) return SR_ERR_BUG; *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, trigger_matches, devc->prof->num_trigger_matches, sizeof(int32_t)); break; default: return SR_ERR_NA; } return SR_OK; } static int receive_data(int fd, int revents, void *cb_data) { int i, ret; struct sr_dev_inst *sdi; struct dev_context *devc; (void)fd; (void)revents; if (!(sdi = cb_data)) { sr_err("cb_data was NULL."); return FALSE; } if (!(devc = sdi->priv)) { sr_err("sdi->priv was NULL."); return FALSE; } if (!devc->ftdic) { sr_err("devc->ftdic was NULL."); return FALSE; } /* Get one block of data. */ if ((ret = cv_read_block(devc)) < 0) { sr_err("Failed to read data block: %d.", ret); sr_dev_acquisition_stop(sdi); return FALSE; } /* We need to get exactly NUM_BLOCKS blocks (i.e. 8MB) of data. */ if (devc->block_counter != (NUM_BLOCKS - 1)) { devc->block_counter++; return TRUE; } sr_dbg("Sampling finished, sending data to session bus now."); /* * All data was received and demangled, send it to the session bus. * * Note: Due to the method how data is spread across the 8MByte of * SDRAM, we can _not_ send it to the session bus in a streaming * manner while we receive it. We have to receive and de-mangle the * full 8MByte first, only then the whole buffer contains valid data. */ for (i = 0; i < NUM_BLOCKS; i++) cv_send_block_to_session_bus(sdi, i); sr_dev_acquisition_stop(sdi); return TRUE; } static int dev_acquisition_start(const struct sr_dev_inst *sdi) { struct dev_context *devc; uint8_t buf[8]; int bytes_to_write, bytes_written; devc = sdi->priv; if (!devc->ftdic) { sr_err("devc->ftdic was NULL."); return SR_ERR_BUG; } devc->divcount = cv_samplerate_to_divcount(sdi, devc->cur_samplerate); if (devc->divcount == 0xff) { sr_err("Invalid divcount/samplerate."); return SR_ERR; } if (cv_convert_trigger(sdi) != SR_OK) { sr_err("Failed to configure trigger."); return SR_ERR; } /* Fill acquisition parameters into buf[]. */ if (devc->prof->model == CHRONOVU_LA8) { buf[0] = devc->divcount; buf[1] = 0xff; /* This byte must always be 0xff. */ buf[2] = devc->trigger_pattern & 0xff; buf[3] = devc->trigger_mask & 0xff; bytes_to_write = 4; } else { buf[0] = devc->divcount; buf[1] = 0xff; /* This byte must always be 0xff. */ buf[2] = (devc->trigger_pattern & 0xff00) >> 8; /* LSB */ buf[3] = (devc->trigger_pattern & 0x00ff) >> 0; /* MSB */ buf[4] = (devc->trigger_mask & 0xff00) >> 8; /* LSB */ buf[5] = (devc->trigger_mask & 0x00ff) >> 0; /* MSB */ buf[6] = (devc->trigger_edgemask & 0xff00) >> 8; /* LSB */ buf[7] = (devc->trigger_edgemask & 0x00ff) >> 0; /* MSB */ bytes_to_write = 8; } /* Start acquisition. */ bytes_written = cv_write(devc, buf, bytes_to_write); if (bytes_written < 0 || bytes_written != bytes_to_write) { sr_err("Acquisition failed to start."); return SR_ERR; } std_session_send_df_header(sdi); /* Time when we should be done (for detecting trigger timeouts). */ devc->done = (devc->divcount + 1) * devc->prof->trigger_constant + g_get_monotonic_time() + (10 * G_TIME_SPAN_SECOND); devc->block_counter = 0; devc->trigger_found = 0; /* Hook up a dummy handler to receive data from the device. */ sr_session_source_add(sdi->session, -1, 0, 0, receive_data, (void *)sdi); return SR_OK; } static int dev_acquisition_stop(struct sr_dev_inst *sdi) { sr_session_source_remove(sdi->session, -1); std_session_send_df_end(sdi); return SR_OK; } static struct sr_dev_driver chronovu_la_driver_info = { .name = "chronovu-la", .longname = "ChronoVu LA8/LA16", .api_version = 1, .init = std_init, .cleanup = std_cleanup, .scan = scan, .dev_list = std_dev_list, .dev_clear = dev_clear, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .context = NULL, }; SR_REGISTER_DEV_DRIVER(chronovu_la_driver_info);