/* * This file is part of the libsigrok project. * * Copyright (C) 2012 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "libsigrok.h" #include "libsigrok-internal.h" #include "protocol.h" /* * Driver for various UNI-T multimeters (and rebranded ones). * * Most UNI-T DMMs can be used with two (three) different PC interface cables: * - The UT-D04 USB/HID cable, old version with Hoitek HE2325U chip. * - The UT-D04 USB/HID cable, new version with WCH CH9325 chip. * - The UT-D01 RS232 cable. * * This driver is meant to support all three cables, and various DMMs that * can be attached to a PC via these cables. Currently only the UT-D04 cable * (new version) is supported. * * The data for one DMM packet (e.g. 14 bytes if the respective DMM uses a * Fortune Semiconductor FS9922-DMM4 chip) is spread across multiple * 8-byte chunks. * * An 8-byte chunk looks like this: * - Byte 0: 0xfz, where z is the number of actual data bytes in this chunk. * - Bytes 1-7: z data bytes, the rest of the bytes should be ignored. * * Example: * f0 00 00 00 00 00 00 00 (no data bytes) * f2 55 77 00 00 00 00 00 (2 data bytes, 0x55 and 0x77) * f1 d1 00 00 00 00 00 00 (1 data byte, 0xd1) * * Chips and serial settings used in UNI-T DMMs (and rebranded ones): * - UNI-T UT108: ? * - UNI-T UT109: ? * - UNI-T UT30A: ? * - UNI-T UT30E: ? * - UNI-T UT60E: Fortune Semiconductor FS9721_LP3 * - UNI-T UT60G: ? * - UNI-T UT61B: ? * - UNI-T UT61C: ? * - UNI-T UT61D: Fortune Semiconductor FS9922-DMM4 * - UNI-T UT61E: Cyrustek ES51922 * - UNI-T UT70B: ? * - Voltcraft VC-820: Fortune Semiconductor FS9721_LP3 * - Voltcraft VC-840: Fortune Semiconductor FS9721_LP3 * - ... */ static void decode_packet(struct sr_dev_inst *sdi, int dmm, const uint8_t *buf) { struct sr_datafeed_packet packet; struct sr_datafeed_analog analog; struct dev_context *devc; struct fs9721_info info; float floatval; int ret; devc = sdi->priv; memset(&analog, 0, sizeof(struct sr_datafeed_analog)); /* Parse the protocol packet. */ ret = SR_ERR; if (dmm == UNI_T_UT61D) ret = sr_dmm_parse_fs9922(buf, &floatval, &analog); else if (dmm == VOLTCRAFT_VC820) ret = sr_fs9721_parse(buf, &floatval, &analog, &info); if (ret != SR_OK) { sr_err("Invalid DMM packet, ignoring."); return; } /* Send a sample packet with one analog value. */ analog.probes = sdi->probes; analog.num_samples = 1; analog.data = &floatval; packet.type = SR_DF_ANALOG; packet.payload = &analog; sr_session_send(devc->cb_data, &packet); /* Increase sample count. */ devc->num_samples++; } static int hid_chip_init(struct dev_context *devc, uint16_t baudrate) { int ret; uint8_t buf[5]; /* Detach kernel drivers which grabbed this device (if any). */ if (libusb_kernel_driver_active(devc->usb->devhdl, 0) == 1) { ret = libusb_detach_kernel_driver(devc->usb->devhdl, 0); if (ret < 0) { sr_err("Failed to detach kernel driver: %s.", libusb_error_name(ret)); return SR_ERR; } sr_dbg("Successfully detached kernel driver."); } else { sr_dbg("No need to detach a kernel driver."); } /* Claim interface 0. */ if ((ret = libusb_claim_interface(devc->usb->devhdl, 0)) < 0) { sr_err("Failed to claim interface 0: %s.", libusb_error_name(ret)); return SR_ERR; } sr_dbg("Successfully claimed interface 0."); /* Baudrate example: 19230 baud -> HEX(19230) == 0x4b1e */ buf[0] = baudrate & 0xff; /* Baudrate, LSB */ buf[1] = (baudrate >> 8) & 0xff; /* Baudrate, MSB */ buf[2] = 0x00; /* Unknown/unused (?) */ buf[3] = 0x00; /* Unknown/unused (?) */ buf[4] = 0x03; /* Unknown, always 0x03. */ /* Send HID feature report to setup the baudrate/chip. */ sr_dbg("Sending initial HID feature report."); sr_spew("HID init = 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x (%d baud)", buf[0], buf[1], buf[2], buf[3], buf[4], baudrate); ret = libusb_control_transfer( devc->usb->devhdl, /* libusb device handle */ LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE | LIBUSB_ENDPOINT_OUT, 9, /* bRequest: HID set_report */ 0x300, /* wValue: HID feature, report number 0 */ 0, /* wIndex: interface 0 */ (unsigned char *)&buf, /* payload buffer */ 5, /* wLength: 5 bytes payload */ 1000 /* timeout (ms) */); if (ret < 0) { sr_err("HID feature report error: %s.", libusb_error_name(ret)); return SR_ERR; } if (ret != 5) { /* TODO: Handle better by also sending the remaining bytes. */ sr_err("Short packet: sent %d/5 bytes.", ret); return SR_ERR; } sr_dbg("Successfully sent initial HID feature report."); return SR_OK; } static void log_8byte_chunk(const uint8_t *buf) { sr_spew("8-byte chunk: %02x %02x %02x %02x %02x %02x %02x %02x " "(%d data bytes)", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], (buf[0] & 0x0f)); } static void log_dmm_packet(const uint8_t *buf) { sr_dbg("DMM packet: %02x %02x %02x %02x %02x %02x %02x" " %02x %02x %02x %02x %02x %02x %02x", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13]); } static int uni_t_dmm_receive_data(int fd, int revents, int dmm, void *cb_data) { struct sr_dev_inst *sdi; struct dev_context *devc; int i, ret, len, num_databytes_in_chunk; uint8_t buf[CHUNK_SIZE]; uint8_t *pbuf; static gboolean first_run = TRUE, synced_on_first_packet = FALSE; static uint64_t data_byte_counter = 0; (void)fd; (void)revents; sdi = cb_data; devc = sdi->priv; pbuf = devc->protocol_buf; /* On the first run, we need to init the HID chip. */ if (first_run) { /* TODO: The baudrate is DMM-specific (UT61D: 19230). */ if ((ret = hid_chip_init(devc, 19230)) != SR_OK) { sr_err("HID chip init failed: %d.", ret); return FALSE; } memset(pbuf, 0x00, NUM_DATA_BYTES); first_run = FALSE; } memset(&buf, 0x00, CHUNK_SIZE); /* Get data from EP2 using an interrupt transfer. */ ret = libusb_interrupt_transfer( devc->usb->devhdl, /* libusb device handle */ LIBUSB_ENDPOINT_IN | 2, /* EP2, IN */ (unsigned char *)&buf, /* receive buffer */ CHUNK_SIZE, /* wLength */ &len, /* actually received byte count */ 1000 /* timeout (ms) */); if (ret < 0) { sr_err("USB receive error: %s.", libusb_error_name(ret)); return FALSE; } if (len != CHUNK_SIZE) { sr_err("Short packet: received %d/%d bytes.", len, CHUNK_SIZE); /* TODO: Print the bytes? */ return FALSE; } log_8byte_chunk((const uint8_t *)&buf); if (buf[0] != 0xf0) { /* First time: Synchronize to the start of a packet. */ if (!synced_on_first_packet) { if (dmm == UNI_T_UT61D) { /* Valid packets start with '+' or '-'. */ if ((buf[1] != '+') && buf[1] != '-') return TRUE; } else if (dmm == VOLTCRAFT_VC820) { /* Valid packets have 0x1 as high nibble. */ if (!sr_fs9721_is_packet_start(buf[1])) return TRUE; } synced_on_first_packet = TRUE; sr_spew("Successfully synchronized on first packet."); } num_databytes_in_chunk = buf[0] & 0x0f; for (i = 0; i < num_databytes_in_chunk; i++) pbuf[data_byte_counter++] = buf[1 + i]; /* TODO: Handle > 14 bytes in pbuf? Can this happen? */ if (data_byte_counter == NUM_DATA_BYTES) { log_dmm_packet(pbuf); data_byte_counter = 0; if (dmm == VOLTCRAFT_VC820) { if (!sr_fs9721_packet_valid(pbuf)) { sr_err("Invalid packet."); return TRUE; } } decode_packet(sdi, dmm, pbuf); memset(pbuf, 0x00, NUM_DATA_BYTES); } } /* Abort acquisition if we acquired enough samples. */ if (devc->limit_samples && devc->num_samples >= devc->limit_samples) { sr_info("Requested number of samples reached."); sdi->driver->dev_acquisition_stop(sdi, cb_data); } return TRUE; } SR_PRIV int uni_t_ut61d_receive_data(int fd, int revents, void *cb_data) { return uni_t_dmm_receive_data(fd, revents, UNI_T_UT61D, cb_data); } SR_PRIV int voltcraft_vc820_receive_data(int fd, int revents, void *cb_data) { return uni_t_dmm_receive_data(fd, revents, VOLTCRAFT_VC820, cb_data); }