/* * This file is part of the sigrok project. * * Copyright (C) 2012 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include "libsigrok.h" #include "libsigrok-internal.h" #include "dso.h" /* Max time in ms before we want to check on USB events */ /* TODO tune this properly */ #define TICK 1 static const int hwcaps[] = { SR_HWCAP_OSCILLOSCOPE, SR_HWCAP_LIMIT_SAMPLES, SR_HWCAP_CONTINUOUS, SR_HWCAP_TIMEBASE, SR_HWCAP_BUFFERSIZE, SR_HWCAP_TRIGGER_SOURCE, SR_HWCAP_TRIGGER_SLOPE, SR_HWCAP_HORIZ_TRIGGERPOS, SR_HWCAP_FILTER, SR_HWCAP_VDIV, SR_HWCAP_COUPLING, 0, }; static const char *probe_names[] = { "CH1", "CH2", NULL, }; static const struct dso_profile dev_profiles[] = { { 0x04b4, 0x2090, 0x04b5, 0x2090, "Hantek", "DSO-2090", FIRMWARE_DIR "/hantek-dso-2xxx.fw" }, { 0x04b4, 0x2150, 0x04b5, 0x2150, "Hantek", "DSO-2150", FIRMWARE_DIR "/hantek-dso-2xxx.fw" }, { 0x04b4, 0x2250, 0x04b5, 0x2250, "Hantek", "DSO-2250", FIRMWARE_DIR "/hantek-dso-2xxx.fw" }, { 0x04b4, 0x5200, 0x04b5, 0x5200, "Hantek", "DSO-5200", FIRMWARE_DIR "/hantek-dso-5xxx.fw" }, { 0x04b4, 0x520a, 0x04b5, 0x520a, "Hantek", "DSO-5200A", FIRMWARE_DIR "/hantek-dso-5xxx.fw" }, { 0, 0, 0, 0, 0, 0, 0 }, }; static const uint64_t buffersizes[] = { 10240, 32768, /* TODO: 65535 */ 0, }; static const struct sr_rational timebases[] = { /* microseconds */ { 10, 1000000 }, { 20, 1000000 }, { 40, 1000000 }, { 100, 1000000 }, { 200, 1000000 }, { 400, 1000000 }, /* milliseconds */ { 1, 1000 }, { 2, 1000 }, { 4, 1000 }, { 10, 1000 }, { 20, 1000 }, { 40, 1000 }, { 100, 1000 }, { 200, 1000 }, { 400, 1000 }, { 0, 0}, }; static const struct sr_rational vdivs[] = { /* millivolts */ { 10, 1000 }, { 20, 1000 }, { 50, 1000 }, { 100, 1000 }, { 200, 1000 }, { 500, 1000 }, /* volts */ { 1, 1 }, { 2, 1 }, { 5, 1 }, { 0, 0 }, }; static const char *trigger_sources[] = { "CH1", "CH2", "EXT", /* TODO: forced */ NULL, }; static const char *filter_targets[] = { "CH1", "CH2", /* TODO: "TRIGGER", */ NULL, }; static const char *coupling[] = { "AC", "DC", "GND", NULL, }; SR_PRIV struct sr_dev_driver hantek_dso_driver_info; static struct sr_dev_driver *hdi = &hantek_dso_driver_info; static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi, void *cb_data); static struct sr_dev_inst *dso_dev_new(int index, const struct dso_profile *prof) { struct sr_dev_inst *sdi; struct sr_probe *probe; struct drv_context *drvc; struct dev_context *devc; int i; sdi = sr_dev_inst_new(index, SR_ST_INITIALIZING, prof->vendor, prof->model, NULL); if (!sdi) return NULL; sdi->driver = hdi; /* Add only the real probes -- EXT isn't a source of data, only * a trigger source internal to the device. */ for (i = 0; probe_names[i]; i++) { if (!(probe = sr_probe_new(i, SR_PROBE_ANALOG, TRUE, probe_names[i]))) return NULL; sdi->probes = g_slist_append(sdi->probes, probe); } if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) { sr_err("hantek-dso: devc malloc failed"); return NULL; } devc->profile = prof; devc->dev_state = IDLE; devc->timebase = DEFAULT_TIMEBASE; devc->ch1_enabled = TRUE; devc->ch2_enabled = TRUE; devc->voltage_ch1 = DEFAULT_VOLTAGE; devc->voltage_ch2 = DEFAULT_VOLTAGE; devc->coupling_ch1 = DEFAULT_COUPLING; devc->coupling_ch2 = DEFAULT_COUPLING; devc->voffset_ch1 = DEFAULT_VERT_OFFSET; devc->voffset_ch2 = DEFAULT_VERT_OFFSET; devc->voffset_trigger = DEFAULT_VERT_TRIGGERPOS; devc->framesize = DEFAULT_FRAMESIZE; devc->triggerslope = SLOPE_POSITIVE; devc->triggersource = g_strdup(DEFAULT_TRIGGER_SOURCE); devc->triggerposition = DEFAULT_HORIZ_TRIGGERPOS; sdi->priv = devc; drvc = hdi->priv; drvc->instances = g_slist_append(drvc->instances, sdi); return sdi; } static int configure_probes(const struct sr_dev_inst *sdi) { struct dev_context *devc; const struct sr_probe *probe; const GSList *l; devc = sdi->priv; devc->ch1_enabled = devc->ch2_enabled = FALSE; for (l = sdi->probes; l; l = l->next) { probe = (struct sr_probe *)l->data; if (probe->index == 0) devc->ch1_enabled = probe->enabled; else if (probe->index == 1) devc->ch2_enabled = probe->enabled; } return SR_OK; } /* Properly close and free all devices. */ static int clear_instances(void) { struct sr_dev_inst *sdi; struct drv_context *drvc; struct dev_context *devc; GSList *l; drvc = hdi->priv; for (l = drvc->instances; l; l = l->next) { if (!(sdi = l->data)) { /* Log error, but continue cleaning up the rest. */ sr_err("hantek-dso: %s: sdi was NULL, continuing", __func__); continue; } if (!(devc = sdi->priv)) { /* Log error, but continue cleaning up the rest. */ sr_err("hantek-dso: %s: sdi->priv was NULL, continuing", __func__); continue; } dso_close(sdi); sr_usb_dev_inst_free(devc->usb); g_free(devc->triggersource); sr_dev_inst_free(sdi); } g_slist_free(drvc->instances); drvc->instances = NULL; return SR_OK; } static int hw_init(void) { struct drv_context *drvc; if (!(drvc = g_try_malloc0(sizeof(struct drv_context)))) { sr_err("hantek-dso: driver context malloc failed."); return SR_ERR; } if (libusb_init(NULL) != 0) { g_free(drvc); sr_err("hantek-dso: Failed to initialize USB."); return SR_ERR; } hdi->priv = drvc; return SR_OK; } static GSList *hw_scan(GSList *options) { struct sr_dev_inst *sdi; const struct dso_profile *prof; struct drv_context *drvc; struct dev_context *devc; GSList *devices; struct libusb_device_descriptor des; libusb_device **devlist; int devcnt, ret, i, j; (void)options; devcnt = 0; devices = 0; drvc = hdi->priv; drvc->instances = NULL; clear_instances(); /* Find all Hantek DSO devices and upload firmware to all of them. */ libusb_get_device_list(NULL, &devlist); for (i = 0; devlist[i]; i++) { if ((ret = libusb_get_device_descriptor(devlist[i], &des))) { sr_err("hantek-dso: failed to get device descriptor: %d", ret); continue; } prof = NULL; for (j = 0; dev_profiles[j].orig_vid; j++) { if (des.idVendor == dev_profiles[j].orig_vid && des.idProduct == dev_profiles[j].orig_pid) { /* Device matches the pre-firmware profile. */ prof = &dev_profiles[j]; sr_dbg("hantek-dso: Found a %s %s.", prof->vendor, prof->model); sdi = dso_dev_new(devcnt, prof); devices = g_slist_append(devices, sdi); devc = sdi->priv; if (ezusb_upload_firmware(devlist[i], USB_CONFIGURATION, prof->firmware) == SR_OK) /* Remember when the firmware on this device was updated */ devc->fw_updated = g_get_monotonic_time(); else sr_err("hantek-dso: firmware upload failed for " "device %d", devcnt); /* Dummy USB address of 0xff will get overwritten later. */ devc->usb = sr_usb_dev_inst_new( libusb_get_bus_number(devlist[i]), 0xff, NULL); devcnt++; break; } else if (des.idVendor == dev_profiles[j].fw_vid && des.idProduct == dev_profiles[j].fw_pid) { /* Device matches the post-firmware profile. */ prof = &dev_profiles[j]; sr_dbg("hantek-dso: Found a %s %s.", prof->vendor, prof->model); sdi = dso_dev_new(devcnt, prof); sdi->status = SR_ST_INACTIVE; devices = g_slist_append(devices, sdi); devc = sdi->priv; devc->usb = sr_usb_dev_inst_new( libusb_get_bus_number(devlist[i]), libusb_get_device_address(devlist[i]), NULL); devcnt++; break; } } if (!prof) /* not a supported VID/PID */ continue; } libusb_free_device_list(devlist, 1); return devices; } static GSList *hw_dev_list(void) { struct drv_context *drvc; drvc = hdi->priv; return drvc->instances; } static int hw_dev_open(struct sr_dev_inst *sdi) { struct dev_context *devc; int64_t timediff_us, timediff_ms; int err; devc = sdi->priv; /* * if the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS * for the FX2 to renumerate */ err = SR_ERR; if (devc->fw_updated > 0) { sr_info("hantek-dso: waiting for device to reset"); /* takes at least 300ms for the FX2 to be gone from the USB bus */ g_usleep(300 * 1000); timediff_ms = 0; while (timediff_ms < MAX_RENUM_DELAY_MS) { if ((err = dso_open(sdi)) == SR_OK) break; g_usleep(100 * 1000); timediff_us = g_get_monotonic_time() - devc->fw_updated; timediff_ms = timediff_us / 1000; sr_spew("hantek-dso: waited %" PRIi64 " ms", timediff_ms); } sr_info("hantek-dso: device came back after %d ms", timediff_ms); } else { err = dso_open(sdi); } if (err != SR_OK) { sr_err("hantek-dso: unable to open device"); return SR_ERR; } err = libusb_claim_interface(devc->usb->devhdl, USB_INTERFACE); if (err != 0) { sr_err("hantek-dso: Unable to claim interface: %d", err); return SR_ERR; } return SR_OK; } static int hw_dev_close(struct sr_dev_inst *sdi) { dso_close(sdi); return SR_OK; } static int hw_cleanup(void) { struct drv_context *drvc; if (!(drvc = hdi->priv)) return SR_OK; clear_instances(); libusb_exit(NULL); return SR_OK; } static int hw_info_get(int info_id, const void **data, const struct sr_dev_inst *sdi) { uint64_t tmp; (void)sdi; switch (info_id) { case SR_DI_HWCAPS: *data = hwcaps; break; case SR_DI_NUM_PROBES: *data = GINT_TO_POINTER(NUM_PROBES); break; case SR_DI_PROBE_NAMES: *data = probe_names; break; case SR_DI_BUFFERSIZES: *data = buffersizes; break; case SR_DI_TIMEBASES: *data = timebases; break; case SR_DI_TRIGGER_SOURCES: *data = trigger_sources; break; case SR_DI_FILTERS: *data = filter_targets; break; case SR_DI_VDIVS: *data = vdivs; break; case SR_DI_COUPLING: *data = coupling; break; /* TODO remove this */ case SR_DI_CUR_SAMPLERATE: *data = &tmp; break; default: return SR_ERR_ARG; } return SR_OK; } static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap, const void *value) { struct dev_context *devc; struct sr_rational tmp_rat; float tmp_float; uint64_t tmp_u64; int ret, i; char **targets; if (sdi->status != SR_ST_ACTIVE) return SR_ERR; ret = SR_OK; devc = sdi->priv; switch (hwcap) { case SR_HWCAP_LIMIT_FRAMES: devc->limit_frames = *(const uint64_t *)value; break; case SR_HWCAP_TRIGGER_SLOPE: tmp_u64 = *(const int *)value; if (tmp_u64 != SLOPE_NEGATIVE && tmp_u64 != SLOPE_POSITIVE) ret = SR_ERR_ARG; devc->triggerslope = tmp_u64; break; case SR_HWCAP_HORIZ_TRIGGERPOS: tmp_float = *(const float *)value; if (tmp_float < 0.0 || tmp_float > 1.0) { sr_err("hantek-dso: trigger position should be between 0.0 and 1.0"); ret = SR_ERR_ARG; } else devc->triggerposition = tmp_float; break; case SR_HWCAP_BUFFERSIZE: tmp_u64 = *(const int *)value; for (i = 0; buffersizes[i]; i++) { if (buffersizes[i] == tmp_u64) { devc->framesize = tmp_u64; break; } } if (buffersizes[i] == 0) ret = SR_ERR_ARG; break; case SR_HWCAP_TIMEBASE: tmp_rat = *(const struct sr_rational *)value; for (i = 0; timebases[i].p && timebases[i].q; i++) { if (timebases[i].p == tmp_rat.p && timebases[i].q == tmp_rat.q) { devc->timebase = i; break; } } if (timebases[i].p == 0 && timebases[i].q == 0) ret = SR_ERR_ARG; break; case SR_HWCAP_TRIGGER_SOURCE: for (i = 0; trigger_sources[i]; i++) { if (!strcmp(value, trigger_sources[i])) { devc->triggersource = g_strdup(value); break; } } if (trigger_sources[i] == 0) ret = SR_ERR_ARG; break; case SR_HWCAP_FILTER: devc->filter_ch1 = devc->filter_ch2 = devc->filter_trigger = 0; targets = g_strsplit(value, ",", 0); for (i = 0; targets[i]; i++) { if (targets[i] == '\0') /* Empty filter string can be used to clear them all. */ ; else if (!strcmp(targets[i], "CH1")) devc->filter_ch1 = TRUE; else if (!strcmp(targets[i], "CH2")) devc->filter_ch2 = TRUE; else if (!strcmp(targets[i], "TRIGGER")) devc->filter_trigger = TRUE; else { sr_err("invalid filter target %s", targets[i]); ret = SR_ERR_ARG; } } g_strfreev(targets); break; case SR_HWCAP_VDIV: /* TODO not supporting vdiv per channel yet */ tmp_rat = *(const struct sr_rational *)value; for (i = 0; vdivs[i].p && vdivs[i].q; i++) { if (vdivs[i].p == tmp_rat.p && vdivs[i].q == tmp_rat.q) { devc->voltage_ch1 = i; devc->voltage_ch2 = i; break; } } if (vdivs[i].p == 0 && vdivs[i].q == 0) ret = SR_ERR_ARG; break; case SR_HWCAP_COUPLING: /* TODO not supporting coupling per channel yet */ for (i = 0; coupling[i]; i++) { if (!strcmp(value, coupling[i])) { devc->coupling_ch1 = i; devc->coupling_ch2 = i; break; } } if (coupling[i] == 0) ret = SR_ERR_ARG; break; default: ret = SR_ERR_ARG; } return ret; } static void send_chunk(struct dev_context *devc, unsigned char *buf, int num_samples) { struct sr_datafeed_packet packet; struct sr_datafeed_analog analog; float ch1, ch2, range; int num_probes, data_offset, i; num_probes = (devc->ch1_enabled && devc->ch2_enabled) ? 2 : 1; packet.type = SR_DF_ANALOG; packet.payload = &analog; /* TODO: support for 5xxx series 9-bit samples */ analog.num_samples = num_samples; analog.mq = SR_MQ_VOLTAGE; analog.unit = SR_UNIT_VOLT; analog.data = g_try_malloc(analog.num_samples * sizeof(float) * num_probes); data_offset = 0; for (i = 0; i < analog.num_samples; i++) { /* The device always sends data for both channels. If a channel * is disabled, it contains a copy of the enabled channel's * data. However, we only send the requested channels to the bus. * * Voltage values are encoded as a value 0-255 (0-512 on the 5200*), * where the value is a point in the range represented by the vdiv * setting. There are 8 vertical divs, so e.g. 500mV/div represents * 4V peak-to-peak where 0 = -2V and 255 = +2V. */ /* TODO: support for 5xxx series 9-bit samples */ if (devc->ch1_enabled) { range = ((float)vdivs[devc->voltage_ch1].p / vdivs[devc->voltage_ch1].q) * 8; ch1 = range / 255 * *(buf + i * 2 + 1); /* Value is centered around 0V. */ ch1 -= range / 2; analog.data[data_offset++] = ch1; } if (devc->ch2_enabled) { range = ((float)vdivs[devc->voltage_ch2].p / vdivs[devc->voltage_ch2].q) * 8; ch2 = range / 255 * *(buf + i * 2); ch2 -= range / 2; analog.data[data_offset++] = ch2; } } sr_session_send(devc->cb_data, &packet); } /* Called by libusb (as triggered by handle_event()) when a transfer comes in. * Only channel data comes in asynchronously, and all transfers for this are * queued up beforehand, so this just needs so chuck the incoming data onto * the libsigrok session bus. */ static void receive_transfer(struct libusb_transfer *transfer) { struct sr_datafeed_packet packet; struct dev_context *devc; int num_samples, pre; devc = transfer->user_data; sr_dbg("hantek-dso: receive_transfer(): status %d received %d bytes", transfer->status, transfer->actual_length); if (transfer->actual_length == 0) /* Nothing to send to the bus. */ return; num_samples = transfer->actual_length / 2; sr_dbg("hantek-dso: got %d-%d/%d samples in frame", devc->samp_received + 1, devc->samp_received + num_samples, devc->framesize); /* The device always sends a full frame, but the beginning of the frame * doesn't represent the trigger point. The offset at which the trigger * happened came in with the capture state, so we need to start sending * from there up the session bus. The samples in the frame buffer before * that trigger point came after the end of the device's frame buffer was * reached, and it wrapped around to overwrite up until the trigger point. */ if (devc->samp_received < devc->trigger_offset) { /* Trigger point not yet reached. */ if (devc->samp_received + num_samples < devc->trigger_offset) { /* The entire chunk is before the trigger point. */ memcpy(devc->framebuf + devc->samp_buffered * 2, transfer->buffer, num_samples * 2); devc->samp_buffered += num_samples; } else { /* This chunk hits or overruns the trigger point. * Store the part before the trigger fired, and * send the rest up to the session bus. */ pre = devc->trigger_offset - devc->samp_received; memcpy(devc->framebuf + devc->samp_buffered * 2, transfer->buffer, pre * 2); devc->samp_buffered += pre; /* The rest of this chunk starts with the trigger point. */ sr_dbg("hantek-dso: reached trigger point, %d samples buffered", devc->samp_buffered); /* Avoid the corner case where the chunk ended at * exactly the trigger point. */ if (num_samples > pre) send_chunk(devc, transfer->buffer + pre * 2, num_samples - pre); } } else { /* Already past the trigger point, just send it all out. */ send_chunk(devc, transfer->buffer, num_samples); } devc->samp_received += num_samples; /* Everything in this transfer was either copied to the buffer or * sent to the session bus. */ g_free(transfer->buffer); libusb_free_transfer(transfer); if (devc->samp_received >= devc->framesize) { /* That was the last chunk in this frame. Send the buffered * pre-trigger samples out now, in one big chunk. */ sr_dbg("hantek-dso: end of frame, sending %d pre-trigger buffered samples", devc->samp_buffered); send_chunk(devc, devc->framebuf, devc->samp_buffered); /* Mark the end of this frame. */ packet.type = SR_DF_FRAME_END; sr_session_send(devc->cb_data, &packet); if (devc->limit_frames && ++devc->num_frames == devc->limit_frames) { /* Terminate session */ devc->dev_state = STOPPING; } else { devc->dev_state = NEW_CAPTURE; } } } static int handle_event(int fd, int revents, void *cb_data) { const struct sr_dev_inst *sdi; struct sr_datafeed_packet packet; struct timeval tv; struct dev_context *devc; const struct libusb_pollfd **lupfd; int num_probes, i; uint32_t trigger_offset; uint8_t capturestate; /* Avoid compiler warnings. */ (void)fd; (void)revents; sdi = cb_data; devc = sdi->priv; if (devc->dev_state == STOPPING) { /* We've been told to wind up the acquisition. */ sr_dbg("hantek-dso: stopping acquisition"); /* TODO: doesn't really cancel pending transfers so they might * come in after SR_DF_END is sent. */ lupfd = libusb_get_pollfds(NULL); for (i = 0; lupfd[i]; i++) sr_source_remove(lupfd[i]->fd); free(lupfd); packet.type = SR_DF_END; sr_session_send(sdi, &packet); devc->dev_state = IDLE; return TRUE; } /* Always handle pending libusb events. */ tv.tv_sec = tv.tv_usec = 0; libusb_handle_events_timeout(NULL, &tv); /* TODO: ugh */ if (devc->dev_state == NEW_CAPTURE) { if (dso_capture_start(devc) != SR_OK) return TRUE; if (dso_enable_trigger(devc) != SR_OK) return TRUE; // if (dso_force_trigger(devc) != SR_OK) // return TRUE; sr_dbg("hantek-dso: successfully requested next chunk"); devc->dev_state = CAPTURE; return TRUE; } if (devc->dev_state != CAPTURE) return TRUE; if ((dso_get_capturestate(devc, &capturestate, &trigger_offset)) != SR_OK) return TRUE; sr_dbg("hantek-dso: capturestate %d", capturestate); sr_dbg("hantek-dso: trigger offset 0x%.6x", trigger_offset); switch (capturestate) { case CAPTURE_EMPTY: if (++devc->capture_empty_count >= MAX_CAPTURE_EMPTY) { devc->capture_empty_count = 0; if (dso_capture_start(devc) != SR_OK) break; if (dso_enable_trigger(devc) != SR_OK) break; // if (dso_force_trigger(devc) != SR_OK) // break; sr_dbg("hantek-dso: successfully requested next chunk"); } break; case CAPTURE_FILLING: /* no data yet */ break; case CAPTURE_READY_8BIT: /* Remember where in the captured frame the trigger is. */ devc->trigger_offset = trigger_offset; num_probes = (devc->ch1_enabled && devc->ch2_enabled) ? 2 : 1; devc->framebuf = g_try_malloc(devc->framesize * num_probes * 2); devc->samp_buffered = devc->samp_received = 0; /* Tell the scope to send us the first frame. */ if (dso_get_channeldata(devc, receive_transfer) != SR_OK) break; /* Don't hit the state machine again until we're done fetching * the data we just told the scope to send. */ devc->dev_state = FETCH_DATA; /* Tell the frontend a new frame is on the way. */ packet.type = SR_DF_FRAME_BEGIN; sr_session_send(sdi, &packet); break; case CAPTURE_READY_9BIT: /* TODO */ sr_err("not yet supported"); break; case CAPTURE_TIMEOUT: /* Doesn't matter, we'll try again next time. */ break; default: sr_dbg("unknown capture state"); } return TRUE; } static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) { const struct libusb_pollfd **lupfd; struct sr_datafeed_packet packet; struct sr_datafeed_header header; struct sr_datafeed_meta_analog meta; struct dev_context *devc; int i; if (sdi->status != SR_ST_ACTIVE) return SR_ERR; devc = sdi->priv; devc->cb_data = cb_data; if (configure_probes(sdi) != SR_OK) { sr_err("hantek-dso: failed to configured probes"); return SR_ERR; } if (dso_init(devc) != SR_OK) return SR_ERR; if (dso_capture_start(devc) != SR_OK) return SR_ERR; devc->dev_state = CAPTURE; lupfd = libusb_get_pollfds(NULL); for (i = 0; lupfd[i]; i++) sr_source_add(lupfd[i]->fd, lupfd[i]->events, TICK, handle_event, (void *)sdi); free(lupfd); /* Send header packet to the session bus. */ packet.type = SR_DF_HEADER; packet.payload = (unsigned char *)&header; header.feed_version = 1; gettimeofday(&header.starttime, NULL); sr_session_send(cb_data, &packet); /* Send metadata about the SR_DF_ANALOG packets to come. */ packet.type = SR_DF_META_ANALOG; packet.payload = &meta; meta.num_probes = NUM_PROBES; sr_session_send(cb_data, &packet); return SR_OK; } static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *devc; (void)cb_data; if (sdi->status != SR_ST_ACTIVE) return SR_ERR; devc = sdi->priv; devc->dev_state = STOPPING; return SR_OK; } SR_PRIV struct sr_dev_driver hantek_dso_driver_info = { .name = "hantek-dso", .longname = "Hantek DSO", .api_version = 1, .init = hw_init, .cleanup = hw_cleanup, .scan = hw_scan, .dev_list = hw_dev_list, .dev_clear = clear_instances, .dev_open = hw_dev_open, .dev_close = hw_dev_close, .info_get = hw_info_get, .dev_config_set = hw_dev_config_set, .dev_acquisition_start = hw_dev_acquisition_start, .dev_acquisition_stop = hw_dev_acquisition_stop, .priv = NULL, };