/* * This file is part of the libsigrok project. * * Copyright (C) 2012 Uwe Hermann * Copyright (C) 2013 Aurelien Jacobs * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * Cyrustek ES519XX protocol parser. * * Communication parameters: Unidirectional, 2400/7o1 or 19230/7o1 */ #include #include #include #include #include "libsigrok.h" #include "libsigrok-internal.h" #define LOG_PREFIX "es519xx" /* Factors for the respective measurement mode (0 means "invalid"). */ static const float factors_2400_11b[9][8] = { {1e-4, 1e-3, 1e-2, 1e-1, 1, 0, 0, 0 }, /* V */ {1e-7, 1e-6, 0, 0, 0, 0, 0, 0 }, /* uA */ {1e-5, 1e-4, 0, 0, 0, 0, 0, 0 }, /* mA */ {1e-2, 0, 0, 0, 0, 0, 0, 0 }, /* A */ {1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 0, 0 }, /* RPM */ {1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0, 0 }, /* Resistance */ {1, 1e1, 1e2, 1e3, 1e4, 1e5, 0, 0 }, /* Frequency */ {1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */ {1e-3, 0, 0, 0, 0, 0, 0, 0 }, /* Diode */ }; static const float factors_19200_11b_5digits[9][8] = { {1e-4, 1e-3, 1e-2, 1e-1, 1e-5, 0, 0, 0}, /* V */ {1e-8, 1e-7, 0, 0, 0, 0, 0, 0}, /* uA */ {1e-6, 1e-5, 0, 0, 0, 0, 0, 0}, /* mA */ {0, 1e-3, 0, 0, 0, 0, 0, 0}, /* A */ {1e-4, 1e-3, 1e-2, 1e-1, 1, 0, 0, 0}, /* Manual A */ {1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Resistance */ {1e-1, 0, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Frequency */ {1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */ {1e-4, 0, 0, 0, 0, 0, 0, 0 }, /* Diode */ }; static const float factors_19200_11b_clampmeter[9][8] = { {1e-3, 1e-2, 1e-1, 1, 1e-4, 0, 0, 0}, /* V */ {1e-7, 1e-6, 0, 0, 0, 0, 0, 0}, /* uA */ {1e-5, 1e-4, 0, 0, 0, 0, 0, 0}, /* mA */ {1e-2, 0, 0, 0, 0, 0, 0, 0}, /* A */ {1e-3, 1e-2, 1e-1, 1, 0, 0, 0, 0}, /* Manual A */ {1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0, 0}, /* Resistance */ {1e-1, 0, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Frequency */ {1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */ {1e-3, 0, 0, 0, 0, 0, 0, 0 }, /* Diode */ }; static const float factors_19200_11b[9][8] = { {1e-3, 1e-2, 1e-1, 1, 1e-4, 0, 0, 0}, /* V */ {1e-7, 1e-6, 0, 0, 0, 0, 0, 0}, /* uA */ {1e-5, 1e-4, 0, 0, 0, 0, 0, 0}, /* mA */ {1e-3, 1e-2, 0, 0, 0, 0, 0, 0}, /* A */ {0, 0, 0, 0, 0, 0, 0, 0}, /* Manual A */ {1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0, 0}, /* Resistance */ {1, 1e1, 1e2, 1e3, 1e4, 0, 0, 0}, /* Frequency */ {1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 0}, /* Capacitance */ {1e-3, 0, 0, 0, 0, 0, 0, 0}, /* Diode */ }; static const float factors_19200_14b[9][8] = { {1e-4, 1e-3, 1e-2, 1e-1, 1e-5, 0, 0, 0}, /* V */ {1e-8, 1e-7, 0, 0, 0, 0, 0, 0}, /* uA */ {1e-6, 1e-5, 0, 0, 0, 0, 0, 0}, /* mA */ {1e-3, 0, 0, 0, 0, 0, 0, 0}, /* A */ {1e-4, 1e-3, 1e-2, 1e-1, 1, 0, 0, 0}, /* Manual A */ {1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Resistance */ {1e-2, 1e-1, 0, 1, 1e1, 1e2, 1e3, 1e4}, /* Frequency */ {1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */ {1e-4, 0, 0, 0, 0, 0, 0, 0 }, /* Diode */ }; static int parse_value(const uint8_t *buf, struct es519xx_info *info, float *result) { int i, intval, num_digits; float floatval; num_digits = 4 + ((info->packet_size == 14) ? 1 : 0); /* Bytes 1-4 (or 5): Value (4 or 5 decimal digits) */ if (info->is_ol) { sr_spew("Over limit."); *result = INFINITY; return SR_OK; } else if (info->is_ul) { sr_spew("Under limit."); *result = INFINITY; return SR_OK; } else if (!isdigit(buf[1]) || !isdigit(buf[2]) || !isdigit(buf[3]) || !isdigit(buf[4]) || (num_digits == 5 && !isdigit(buf[5]))) { sr_err("Value contained invalid digits: %02x %02x %02x %02x " "(%c %c %c %c).", buf[1], buf[2], buf[3], buf[4], buf[1], buf[2], buf[3], buf[4]); return SR_ERR; } intval = (info->is_digit4) ? 1 : 0; for (i = 0; i < num_digits; i++) intval = 10 * intval + (buf[i + 1] - '0'); /* Apply sign. */ intval *= info->is_sign ? -1 : 1; floatval = (float)intval; /* Note: The decimal point position will be parsed later. */ sr_spew("The display value is %f.", floatval); *result = floatval; return SR_OK; } static int parse_range(uint8_t b, float *floatval, const struct es519xx_info *info) { int idx, mode; float factor = 0; idx = b - '0'; if (idx < 0 || idx > 7) { sr_dbg("Invalid range byte / index: 0x%02x / 0x%02x.", b, idx); return SR_ERR; } /* Parse range byte (depends on the measurement mode). */ if (info->is_voltage) mode = 0; /* V */ else if (info->is_current && info->is_micro) mode = 1; /* uA */ else if (info->is_current && info->is_milli) mode = 2; /* mA */ else if (info->is_current && info->is_auto) mode = 3; /* A */ else if (info->is_current && !info->is_auto) mode = 4; /* Manual A */ else if (info->is_rpm) /* Not a typo, it's really index 4 in factors_2400_11b[][]. */ mode = 4; /* RPM */ else if (info->is_resistance || info->is_continuity) mode = 5; /* Resistance */ else if (info->is_frequency) mode = 6; /* Frequency */ else if (info->is_capacitance) mode = 7; /* Capacitance */ else if (info->is_diode) mode = 8; /* Diode */ else if (info->is_duty_cycle) mode = 0; /* Dummy, unused */ else { sr_dbg("Invalid mode, range byte was: 0x%02x.", b); return SR_ERR; } if (info->is_vbar) { if (info->is_micro) factor = (const float[]){1e-1, 1}[idx]; else if (info->is_milli) factor = (const float[]){1e-2, 1e-1}[idx]; } else if (info->is_duty_cycle) factor = 1e-1; else if (info->baudrate == 2400) factor = factors_2400_11b[mode][idx]; else if (info->fivedigits) factor = factors_19200_11b_5digits[mode][idx]; else if (info->clampmeter) factor = factors_19200_11b_clampmeter[mode][idx]; else if (info->packet_size == 11) factor = factors_19200_11b[mode][idx]; else if (info->packet_size == 14) factor = factors_19200_14b[mode][idx]; if (factor == 0) { sr_dbg("Invalid factor for range byte: 0x%02x.", b); return SR_ERR; } /* Apply respective factor (mode-dependent) on the value. */ *floatval *= factor; sr_dbg("Applying factor %f, new value is %f.", factor, *floatval); return SR_OK; } static void parse_flags(const uint8_t *buf, struct es519xx_info *info) { int function, status; function = 5 + ((info->packet_size == 14) ? 1 : 0); status = function + 1; /* Status byte */ if (info->alt_functions) { info->is_sign = (buf[status] & (1 << 3)) != 0; info->is_batt = (buf[status] & (1 << 2)) != 0; /* Bat. low */ info->is_ol = (buf[status] & (1 << 1)) != 0; /* Overflow */ info->is_ol |= (buf[status] & (1 << 0)) != 0; /* Overflow */ } else { info->is_judge = (buf[status] & (1 << 3)) != 0; info->is_sign = (buf[status] & (1 << 2)) != 0; info->is_batt = (buf[status] & (1 << 1)) != 0; /* Bat. low */ info->is_ol = (buf[status] & (1 << 0)) != 0; /* Overflow */ } if (info->packet_size == 14) { /* Option 1 byte */ info->is_max = (buf[8] & (1 << 3)) != 0; info->is_min = (buf[8] & (1 << 2)) != 0; info->is_rel = (buf[8] & (1 << 1)) != 0; info->is_rmr = (buf[8] & (1 << 0)) != 0; /* Option 2 byte */ info->is_ul = (buf[9] & (1 << 3)) != 0; /* Underflow */ info->is_pmax = (buf[9] & (1 << 2)) != 0; /* Max. peak value */ info->is_pmin = (buf[9] & (1 << 1)) != 0; /* Min. peak value */ /* Option 3 byte */ info->is_dc = (buf[10] & (1 << 3)) != 0; info->is_ac = (buf[10] & (1 << 2)) != 0; info->is_auto = (buf[10] & (1 << 1)) != 0; info->is_vahz = (buf[10] & (1 << 0)) != 0; /* LPF: Low-pass filter(s) */ if (info->selectable_lpf) { /* Option 4 byte */ info->is_hold = (buf[11] & (1 << 3)) != 0; info->is_vbar = (buf[11] & (1 << 2)) != 0; info->is_lpf1 = (buf[11] & (1 << 1)) != 0; info->is_lpf0 = (buf[11] & (1 << 0)) != 0; } else { /* Option 4 byte */ info->is_vbar = (buf[11] & (1 << 2)) != 0; info->is_hold = (buf[11] & (1 << 1)) != 0; info->is_lpf1 = (buf[11] & (1 << 0)) != 0; } } else if (info->alt_functions) { /* Option 2 byte */ info->is_dc = (buf[8] & (1 << 3)) != 0; info->is_auto = (buf[8] & (1 << 2)) != 0; info->is_apo = (buf[8] & (1 << 0)) != 0; info->is_ac = !info->is_dc; } else { /* Option 1 byte */ if (info->baudrate == 2400) { info->is_pmax = (buf[7] & (1 << 3)) != 0; info->is_pmin = (buf[7] & (1 << 2)) != 0; info->is_vahz = (buf[7] & (1 << 0)) != 0; } else if (info->fivedigits) { info->is_ul = (buf[7] & (1 << 3)) != 0; info->is_pmax = (buf[7] & (1 << 2)) != 0; info->is_pmin = (buf[7] & (1 << 1)) != 0; info->is_digit4 = (buf[7] & (1 << 0)) != 0; } else if (info->clampmeter) { info->is_ul = (buf[7] & (1 << 3)) != 0; info->is_vasel = (buf[7] & (1 << 2)) != 0; info->is_vbar = (buf[7] & (1 << 1)) != 0; } else { info->is_hold = (buf[7] & (1 << 3)) != 0; info->is_max = (buf[7] & (1 << 2)) != 0; info->is_min = (buf[7] & (1 << 1)) != 0; } /* Option 2 byte */ info->is_dc = (buf[8] & (1 << 3)) != 0; info->is_ac = (buf[8] & (1 << 2)) != 0; info->is_auto = (buf[8] & (1 << 1)) != 0; if (info->baudrate == 2400) info->is_apo = (buf[8] & (1 << 0)) != 0; else info->is_vahz = (buf[8] & (1 << 0)) != 0; } /* Function byte */ if (info->alt_functions) { switch (buf[function]) { case 0x3f: /* A */ info->is_current = info->is_auto = TRUE; break; case 0x3e: /* uA */ info->is_current = info->is_micro = info->is_auto = TRUE; break; case 0x3d: /* mA */ info->is_current = info->is_milli = info->is_auto = TRUE; break; case 0x3c: /* V */ info->is_voltage = TRUE; break; case 0x37: /* Resistance */ info->is_resistance = TRUE; break; case 0x36: /* Continuity */ info->is_continuity = TRUE; break; case 0x3b: /* Diode */ info->is_diode = TRUE; break; case 0x3a: /* Frequency */ info->is_frequency = TRUE; break; case 0x34: /* ADP0 */ case 0x35: /* ADP0 */ info->is_adp0 = TRUE; break; case 0x38: /* ADP1 */ case 0x39: /* ADP1 */ info->is_adp1 = TRUE; break; case 0x32: /* ADP2 */ case 0x33: /* ADP2 */ info->is_adp2 = TRUE; break; case 0x30: /* ADP3 */ case 0x31: /* ADP3 */ info->is_adp3 = TRUE; break; default: sr_err("Invalid function byte: 0x%02x.", buf[function]); break; } } else { /* Note: Some of these mappings are fixed up later. */ switch (buf[function]) { case 0x3b: /* V */ info->is_voltage = TRUE; break; case 0x3d: /* uA */ info->is_current = info->is_micro = info->is_auto = TRUE; break; case 0x3f: /* mA */ info->is_current = info->is_milli = info->is_auto = TRUE; break; case 0x30: /* A */ info->is_current = info->is_auto = TRUE; break; case 0x39: /* Manual A */ info->is_current = TRUE; info->is_auto = FALSE; /* Manual mode */ break; case 0x33: /* Resistance */ info->is_resistance = TRUE; break; case 0x35: /* Continuity */ info->is_continuity = TRUE; break; case 0x31: /* Diode */ info->is_diode = TRUE; break; case 0x32: /* Frequency / RPM / duty cycle */ if (info->packet_size == 14) { if (info->is_judge) info->is_duty_cycle = TRUE; else info->is_frequency = TRUE; } else { if (info->is_judge) info->is_rpm = TRUE; else info->is_frequency = TRUE; } break; case 0x36: /* Capacitance */ info->is_capacitance = TRUE; break; case 0x34: /* Temperature */ info->is_temperature = TRUE; if (info->is_judge) info->is_celsius = TRUE; else info->is_fahrenheit = TRUE; /* IMPORTANT: The digits always represent Celsius! */ break; case 0x3e: /* ADP0 */ info->is_adp0 = TRUE; break; case 0x3c: /* ADP1 */ info->is_adp1 = TRUE; break; case 0x38: /* ADP2 */ info->is_adp2 = TRUE; break; case 0x3a: /* ADP3 */ info->is_adp3 = TRUE; break; default: sr_err("Invalid function byte: 0x%02x.", buf[function]); break; } } if (info->is_vahz && (info->is_voltage || info->is_current)) { info->is_voltage = FALSE; info->is_current = FALSE; info->is_milli = info->is_micro = FALSE; if (info->packet_size == 14) { if (info->is_judge) info->is_duty_cycle = TRUE; else info->is_frequency = TRUE; } else { if (info->is_judge) info->is_rpm = TRUE; else info->is_frequency = TRUE; } } if (info->is_current && (info->is_micro || info->is_milli) && info->is_vasel) { info->is_current = info->is_auto = FALSE; info->is_voltage = TRUE; } if (info->baudrate == 2400) { /* Inverted mapping between mA and A, and no manual A. */ if (info->is_current && (info->is_milli || !info->is_auto)) { info->is_milli = !info->is_milli; info->is_auto = TRUE; } } } static void handle_flags(struct sr_datafeed_analog *analog, float *floatval, const struct es519xx_info *info) { /* * Note: is_micro etc. are not used directly to multiply/divide * floatval, this is handled via parse_range() and factors[][]. */ /* Measurement modes */ if (info->is_voltage) { analog->mq = SR_MQ_VOLTAGE; analog->unit = SR_UNIT_VOLT; } if (info->is_current) { analog->mq = SR_MQ_CURRENT; analog->unit = SR_UNIT_AMPERE; } if (info->is_resistance) { analog->mq = SR_MQ_RESISTANCE; analog->unit = SR_UNIT_OHM; } if (info->is_frequency) { analog->mq = SR_MQ_FREQUENCY; analog->unit = SR_UNIT_HERTZ; } if (info->is_capacitance) { analog->mq = SR_MQ_CAPACITANCE; analog->unit = SR_UNIT_FARAD; } if (info->is_temperature && info->is_celsius) { analog->mq = SR_MQ_TEMPERATURE; analog->unit = SR_UNIT_CELSIUS; } if (info->is_temperature && info->is_fahrenheit) { analog->mq = SR_MQ_TEMPERATURE; analog->unit = SR_UNIT_FAHRENHEIT; } if (info->is_continuity) { analog->mq = SR_MQ_CONTINUITY; analog->unit = SR_UNIT_BOOLEAN; *floatval = (*floatval < 0.0 || *floatval > 25.0) ? 0.0 : 1.0; } if (info->is_diode) { analog->mq = SR_MQ_VOLTAGE; analog->unit = SR_UNIT_VOLT; } if (info->is_rpm) { analog->mq = SR_MQ_FREQUENCY; analog->unit = SR_UNIT_REVOLUTIONS_PER_MINUTE; } if (info->is_duty_cycle) { analog->mq = SR_MQ_DUTY_CYCLE; analog->unit = SR_UNIT_PERCENTAGE; } /* Measurement related flags */ if (info->is_ac) analog->mqflags |= SR_MQFLAG_AC; if (info->is_dc) analog->mqflags |= SR_MQFLAG_DC; if (info->is_auto) analog->mqflags |= SR_MQFLAG_AUTORANGE; if (info->is_diode) analog->mqflags |= SR_MQFLAG_DIODE; if (info->is_hold) /* * Note: HOLD only affects the number displayed on the LCD, * but not the value sent via the protocol! It also does not * affect the bargraph on the LCD. */ analog->mqflags |= SR_MQFLAG_HOLD; if (info->is_max) analog->mqflags |= SR_MQFLAG_MAX; if (info->is_min) analog->mqflags |= SR_MQFLAG_MIN; if (info->is_rel) analog->mqflags |= SR_MQFLAG_RELATIVE; /* Other flags */ if (info->is_judge) sr_spew("Judge bit is set."); if (info->is_batt) sr_spew("Battery is low."); if (info->is_ol) sr_spew("Input overflow."); if (info->is_ul) sr_spew("Input underflow."); if (info->is_pmax) sr_spew("pMAX active, LCD shows max. peak value."); if (info->is_pmin) sr_spew("pMIN active, LCD shows min. peak value."); if (info->is_vahz) sr_spew("VAHZ active."); if (info->is_apo) sr_spew("Auto-Power-Off enabled."); if (info->is_vbar) sr_spew("VBAR active."); if ((!info->selectable_lpf && info->is_lpf1) || (info->selectable_lpf && (!info->is_lpf0 || !info->is_lpf1))) sr_spew("Low-pass filter feature is active."); } static gboolean flags_valid(const struct es519xx_info *info) { int count; /* Does the packet have more than one multiplier? */ count = (info->is_micro) ? 1 : 0; count += (info->is_milli) ? 1 : 0; if (count > 1) { sr_err("More than one multiplier detected in packet."); return FALSE; } /* Does the packet "measure" more than one type of value? */ count = (info->is_voltage) ? 1 : 0; count += (info->is_current) ? 1 : 0; count += (info->is_resistance) ? 1 : 0; count += (info->is_frequency) ? 1 : 0; count += (info->is_capacitance) ? 1 : 0; count += (info->is_temperature) ? 1 : 0; count += (info->is_continuity) ? 1 : 0; count += (info->is_diode) ? 1 : 0; count += (info->is_rpm) ? 1 : 0; if (count > 1) { sr_err("More than one measurement type detected in packet."); return FALSE; } /* Both AC and DC set? */ if (info->is_ac && info->is_dc) { sr_err("Both AC and DC flags detected in packet."); return FALSE; } return TRUE; } static gboolean sr_es519xx_packet_valid(const uint8_t *buf, struct es519xx_info *info) { int s; s = info->packet_size; if (s == 11 && memcmp(buf, buf + s, s)) return FALSE; if (buf[s - 2] != '\r' || buf[s - 1] != '\n') return FALSE; parse_flags(buf, info); if (!flags_valid(info)) return FALSE; return TRUE; } static int sr_es519xx_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, struct es519xx_info *info) { int ret; if (!sr_es519xx_packet_valid(buf, info)) return SR_ERR; if ((ret = parse_value(buf, info, floatval)) != SR_OK) { sr_err("Error parsing value: %d.", ret); return ret; } if ((ret = parse_range(buf[0], floatval, info)) != SR_OK) return ret; handle_flags(analog, floatval, info); return SR_OK; } /* * Functions for 2400 baud / 11 bytes protocols. * This includes ES51962, ES51971, ES51972, ES51978 and ES51989. */ SR_PRIV gboolean sr_es519xx_2400_11b_packet_valid(const uint8_t *buf) { struct es519xx_info info = { 0 }; info.baudrate = 2400; info.packet_size = 11; return sr_es519xx_packet_valid(buf, &info); } SR_PRIV int sr_es519xx_2400_11b_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info) { struct es519xx_info *info_local; info_local = info; memset(info_local, 0, sizeof(struct es519xx_info)); info_local->baudrate = 2400; info_local->packet_size = 11; return sr_es519xx_parse(buf, floatval, analog, info); } /* * Functions for 2400 baud / 11 byte protocols. * This includes ES51960, ES51977 and ES51988. */ SR_PRIV gboolean sr_es519xx_2400_11b_altfn_packet_valid(const uint8_t *buf) { struct es519xx_info info = { 0 }; info.baudrate = 2400; info.packet_size = 11; info.alt_functions = TRUE; return sr_es519xx_packet_valid(buf, &info); } SR_PRIV int sr_es519xx_2400_11b_altfn_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info) { struct es519xx_info *info_local; info_local = info; memset(info_local, 0, sizeof(struct es519xx_info)); info_local->baudrate = 2400; info_local->packet_size = 11; info_local->alt_functions = TRUE; return sr_es519xx_parse(buf, floatval, analog, info); } /* * Functions for 19200 baud / 11 bytes protocols with 5 digits display. * This includes ES51911, ES51916 and ES51918. */ SR_PRIV gboolean sr_es519xx_19200_11b_5digits_packet_valid(const uint8_t *buf) { struct es519xx_info info = { 0 }; info.baudrate = 19200; info.packet_size = 11; info.fivedigits = TRUE; return sr_es519xx_packet_valid(buf, &info); } SR_PRIV int sr_es519xx_19200_11b_5digits_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info) { struct es519xx_info *info_local; info_local = info; memset(info_local, 0, sizeof(struct es519xx_info)); info_local->baudrate = 19200; info_local->packet_size = 11; info_local->fivedigits = TRUE; return sr_es519xx_parse(buf, floatval, analog, info); } /* * Functions for 19200 baud / 11 bytes protocols with clamp meter support. * This includes ES51967 and ES51969. */ SR_PRIV gboolean sr_es519xx_19200_11b_clamp_packet_valid(const uint8_t *buf) { struct es519xx_info info = { 0 }; info.baudrate = 19200; info.packet_size = 11; info.clampmeter = TRUE; return sr_es519xx_packet_valid(buf, &info); } SR_PRIV int sr_es519xx_19200_11b_clamp_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info) { struct es519xx_info *info_local; info_local = info; memset(info_local, 0, sizeof(struct es519xx_info)); info_local->baudrate = 19200; info_local->packet_size = 11; info_local->clampmeter = TRUE; return sr_es519xx_parse(buf, floatval, analog, info); } /* * Functions for 19200 baud / 11 bytes protocols. * This includes ES51981, ES51982, ES51983, ES51984 and ES51986. */ SR_PRIV gboolean sr_es519xx_19200_11b_packet_valid(const uint8_t *buf) { struct es519xx_info info = { 0 }; info.baudrate = 19200; info.packet_size = 11; return sr_es519xx_packet_valid(buf, &info); } SR_PRIV int sr_es519xx_19200_11b_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info) { struct es519xx_info *info_local; info_local = info; memset(info_local, 0, sizeof(struct es519xx_info)); info_local->baudrate = 19200; info_local->packet_size = 11; return sr_es519xx_parse(buf, floatval, analog, info); } /* * Functions for 19200 baud / 14 bytes protocols. * This includes ES51921 and ES51922. */ SR_PRIV gboolean sr_es519xx_19200_14b_packet_valid(const uint8_t *buf) { struct es519xx_info info = { 0 }; info.baudrate = 19200; info.packet_size = 14; return sr_es519xx_packet_valid(buf, &info); } SR_PRIV int sr_es519xx_19200_14b_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info) { struct es519xx_info *info_local; info_local = info; memset(info_local, 0, sizeof(struct es519xx_info)); info_local->baudrate = 19200; info_local->packet_size = 14; return sr_es519xx_parse(buf, floatval, analog, info); } /* * Functions for 19200 baud / 14 bytes protocols with selectable LPF. * This includes ES51931 and ES51932. */ SR_PRIV gboolean sr_es519xx_19200_14b_sel_lpf_packet_valid(const uint8_t *buf) { struct es519xx_info info = { 0 }; info.baudrate = 19200; info.packet_size = 14; info.selectable_lpf = TRUE; return sr_es519xx_packet_valid(buf, &info); } SR_PRIV int sr_es519xx_19200_14b_sel_lpf_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info) { struct es519xx_info *info_local; info_local = info; memset(info_local, 0, sizeof(struct es519xx_info)); info_local->baudrate = 19200; info_local->packet_size = 14; info_local->selectable_lpf = TRUE; return sr_es519xx_parse(buf, floatval, analog, info); }