/* * This file is part of the sigrok project. * * Copyright (C) 2010 Uwe Hermann * Copyright (C) 2011 Olivier Fauchon * Copyright (C) 2012 Alexandru Gagniuc * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #ifdef _WIN32 #include #include #define pipe(fds) _pipe(fds, 4096, _O_BINARY) #endif #include "libsigrok.h" #include "libsigrok-internal.h" /* Message logging helpers with driver-specific prefix string. */ #define DRIVER_LOG_DOMAIN "demo: " #define sr_log(l, s, args...) sr_log(l, DRIVER_LOG_DOMAIN s, ## args) #define sr_spew(s, args...) sr_spew(DRIVER_LOG_DOMAIN s, ## args) #define sr_dbg(s, args...) sr_dbg(DRIVER_LOG_DOMAIN s, ## args) #define sr_info(s, args...) sr_info(DRIVER_LOG_DOMAIN s, ## args) #define sr_warn(s, args...) sr_warn(DRIVER_LOG_DOMAIN s, ## args) #define sr_err(s, args...) sr_err(DRIVER_LOG_DOMAIN s, ## args) /* TODO: Number of probes should be configurable. */ #define NUM_PROBES 8 #define DEMONAME "Demo device" /* The size of chunks to send through the session bus. */ /* TODO: Should be configurable. */ #define BUFSIZE 4096 #define STR_PATTERN_SIGROK "sigrok" #define STR_PATTERN_RANDOM "random" #define STR_PATTERN_INC "incremental" #define STR_PATTERN_ALL_LOW "all-low" #define STR_PATTERN_ALL_HIGH "all-high" /* Supported patterns which we can generate */ enum { /** * Pattern which spells "sigrok" using '0's (with '1's as "background") * when displayed using the 'bits' output format. */ PATTERN_SIGROK, /** Pattern which consists of (pseudo-)random values on all probes. */ PATTERN_RANDOM, /** * Pattern which consists of incrementing numbers. * TODO: Better description. */ PATTERN_INC, /** Pattern where all probes have a low logic state. */ PATTERN_ALL_LOW, /** Pattern where all probes have a high logic state. */ PATTERN_ALL_HIGH, }; /* Private, per-device-instance driver context. */ struct dev_context { struct sr_dev_inst *sdi; int pipe_fds[2]; GIOChannel *channel; uint64_t cur_samplerate; uint64_t limit_samples; uint64_t limit_msec; uint8_t sample_generator; uint64_t samples_counter; void *cb_data; int64_t starttime; }; static const int hwcaps[] = { SR_CONF_LOGIC_ANALYZER, SR_CONF_DEMO_DEV, SR_CONF_SAMPLERATE, SR_CONF_PATTERN_MODE, SR_CONF_LIMIT_SAMPLES, SR_CONF_LIMIT_MSEC, SR_CONF_CONTINUOUS, }; static const uint64_t samplerates[] = { SR_HZ(1), SR_GHZ(1), SR_HZ(1), }; static const char *pattern_strings[] = { "sigrok", "random", "incremental", "all-low", "all-high", }; /* We name the probes 0-7 on our demo driver. */ static const char *probe_names[NUM_PROBES + 1] = { "0", "1", "2", "3", "4", "5", "6", "7", NULL, }; static uint8_t pattern_sigrok[] = { 0x4c, 0x92, 0x92, 0x92, 0x64, 0x00, 0x00, 0x00, 0x82, 0xfe, 0xfe, 0x82, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x82, 0x82, 0x92, 0x74, 0x00, 0x00, 0x00, 0xfe, 0x12, 0x12, 0x32, 0xcc, 0x00, 0x00, 0x00, 0x7c, 0x82, 0x82, 0x82, 0x7c, 0x00, 0x00, 0x00, 0xfe, 0x10, 0x28, 0x44, 0x82, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xbe, 0xbe, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; /* Private, per-device-instance driver context. */ /* TODO: struct context as with the other drivers. */ /* List of struct sr_dev_inst, maintained by dev_open()/dev_close(). */ SR_PRIV struct sr_dev_driver demo_driver_info; static struct sr_dev_driver *di = &demo_driver_info; static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data); static int clear_instances(void) { /* Nothing needed so far. */ return SR_OK; } static int hw_init(struct sr_context *sr_ctx) { return std_hw_init(sr_ctx, di, DRIVER_LOG_DOMAIN); } static GSList *hw_scan(GSList *options) { struct sr_dev_inst *sdi; struct sr_probe *probe; struct drv_context *drvc; struct dev_context *devc; GSList *devices; int i; (void)options; drvc = di->priv; devices = NULL; sdi = sr_dev_inst_new(0, SR_ST_ACTIVE, DEMONAME, NULL, NULL); if (!sdi) { sr_err("Device instance creation failed."); return NULL; } sdi->driver = di; for (i = 0; probe_names[i]; i++) { if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE, probe_names[i]))) return NULL; sdi->probes = g_slist_append(sdi->probes, probe); } devices = g_slist_append(devices, sdi); drvc->instances = g_slist_append(drvc->instances, sdi); if (!(devc = g_try_malloc(sizeof(struct dev_context)))) { sr_err("Device context malloc failed."); return NULL; } devc->sdi = sdi; devc->cur_samplerate = SR_KHZ(200); devc->limit_samples = 0; devc->limit_msec = 0; devc->sample_generator = PATTERN_SIGROK; sdi->priv = devc; return devices; } static GSList *hw_dev_list(void) { return ((struct drv_context *)(di->priv))->instances; } static int hw_dev_open(struct sr_dev_inst *sdi) { (void)sdi; /* Nothing needed so far. */ return SR_OK; } static int hw_dev_close(struct sr_dev_inst *sdi) { (void)sdi; /* Nothing needed so far. */ return SR_OK; } static int hw_cleanup(void) { GSList *l; struct sr_dev_inst *sdi; struct drv_context *drvc; int ret = SR_OK; if (!(drvc = di->priv)) return SR_OK; /* Properly close and free all devices. */ for (l = drvc->instances; l; l = l->next) { if (!(sdi = l->data)) { /* Log error, but continue cleaning up the rest. */ sr_err("%s: sdi was NULL, continuing", __func__); ret = SR_ERR_BUG; continue; } sr_dev_inst_free(sdi); } g_slist_free(drvc->instances); drvc->instances = NULL; return ret; } static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi) { struct dev_context *const devc = sdi->priv; switch (id) { case SR_CONF_SAMPLERATE: *data = g_variant_new_uint64(devc->cur_samplerate); break; case SR_CONF_LIMIT_SAMPLES: *data = g_variant_new_uint64(devc->limit_samples); break; case SR_CONF_LIMIT_MSEC: *data = g_variant_new_uint64(devc->limit_msec); break; case SR_CONF_PATTERN_MODE: switch (devc->sample_generator) { case PATTERN_SIGROK: *data = g_variant_new_string(STR_PATTERN_SIGROK); break; case PATTERN_RANDOM: *data = g_variant_new_string(STR_PATTERN_RANDOM); break; case PATTERN_INC: *data = g_variant_new_string(STR_PATTERN_INC); break; case PATTERN_ALL_LOW: *data = g_variant_new_string(STR_PATTERN_ALL_LOW); break; case PATTERN_ALL_HIGH: *data = g_variant_new_string(STR_PATTERN_ALL_HIGH); break; } break; default: return SR_ERR_ARG; } return SR_OK; } static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi) { int ret; const char *stropt; struct dev_context *const devc = sdi->priv; if (id == SR_CONF_SAMPLERATE) { devc->cur_samplerate = g_variant_get_uint64(data); sr_dbg("%s: setting samplerate to %" PRIu64, __func__, devc->cur_samplerate); ret = SR_OK; } else if (id == SR_CONF_LIMIT_SAMPLES) { devc->limit_msec = 0; devc->limit_samples = g_variant_get_uint64(data); sr_dbg("%s: setting limit_samples to %" PRIu64, __func__, devc->limit_samples); ret = SR_OK; } else if (id == SR_CONF_LIMIT_MSEC) { devc->limit_msec = g_variant_get_uint64(data); devc->limit_samples = 0; sr_dbg("%s: setting limit_msec to %" PRIu64, __func__, devc->limit_msec); ret = SR_OK; } else if (id == SR_CONF_PATTERN_MODE) { stropt = g_variant_get_string(data, NULL); ret = SR_OK; if (!strcmp(stropt, STR_PATTERN_SIGROK)) { devc->sample_generator = PATTERN_SIGROK; } else if (!strcmp(stropt, STR_PATTERN_RANDOM)) { devc->sample_generator = PATTERN_RANDOM; } else if (!strcmp(stropt, STR_PATTERN_INC)) { devc->sample_generator = PATTERN_INC; } else if (!strcmp(stropt, STR_PATTERN_ALL_LOW)) { devc->sample_generator = PATTERN_ALL_LOW; } else if (!strcmp(stropt, STR_PATTERN_ALL_HIGH)) { devc->sample_generator = PATTERN_ALL_HIGH; } else { ret = SR_ERR; } sr_dbg("%s: setting pattern to %d", __func__, devc->sample_generator); } else { ret = SR_ERR; } return ret; } static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi) { GVariant *gvar; GVariantBuilder gvb; (void)sdi; switch (key) { case SR_CONF_DEVICE_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t)); break; case SR_CONF_SAMPLERATE: g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates, ARRAY_SIZE(samplerates), sizeof(uint64_t)); g_variant_builder_add(&gvb, "{sv}", "samplerate-steps", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_PATTERN_MODE: *data = g_variant_new_strv(pattern_strings, ARRAY_SIZE(pattern_strings)); break; default: return SR_ERR_ARG; } return SR_OK; } static void samples_generator(uint8_t *buf, uint64_t size, struct dev_context *devc) { static uint64_t p = 0; uint64_t i; /* TODO: Needed? */ memset(buf, 0, size); switch (devc->sample_generator) { case PATTERN_SIGROK: /* sigrok pattern */ for (i = 0; i < size; i++) { *(buf + i) = ~(pattern_sigrok[ p++ % sizeof(pattern_sigrok)] >> 1); } break; case PATTERN_RANDOM: /* Random */ for (i = 0; i < size; i++) *(buf + i) = (uint8_t)(rand() & 0xff); break; case PATTERN_INC: /* Simple increment */ for (i = 0; i < size; i++) *(buf + i) = p++; break; case PATTERN_ALL_LOW: /* All probes are low */ memset(buf, 0x00, size); break; case PATTERN_ALL_HIGH: /* All probes are high */ memset(buf, 0xff, size); break; default: sr_err("Unknown pattern: %d.", devc->sample_generator); break; } } /* Callback handling data */ static int receive_data(int fd, int revents, void *cb_data) { struct dev_context *devc = cb_data; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; uint8_t buf[BUFSIZE]; static uint64_t samples_to_send, expected_samplenum, sending_now; int64_t time, elapsed; (void)fd; (void)revents; /* How many "virtual" samples should we have collected by now? */ time = g_get_monotonic_time(); elapsed = time - devc->starttime; expected_samplenum = elapsed * devc->cur_samplerate / 1000000; /* Of those, how many do we still have to send? */ samples_to_send = expected_samplenum - devc->samples_counter; if (devc->limit_samples) { samples_to_send = MIN(samples_to_send, devc->limit_samples - devc->samples_counter); } while (samples_to_send > 0) { sending_now = MIN(samples_to_send, sizeof(buf)); samples_to_send -= sending_now; samples_generator(buf, sending_now, devc); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = sending_now; logic.unitsize = 1; logic.data = buf; sr_session_send(devc->cb_data, &packet); devc->samples_counter += sending_now; } if (devc->limit_samples && devc->samples_counter >= devc->limit_samples) { sr_info("Requested number of samples reached."); hw_dev_acquisition_stop(devc->sdi, cb_data); return TRUE; } return TRUE; } static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *const devc = sdi->priv; devc->cb_data = cb_data; devc->samples_counter = 0; /* * Setting two channels connected by a pipe is a remnant from when the * demo driver generated data in a thread, and collected and sent the * data in the main program loop. * They are kept here because it provides a convenient way of setting * up a timeout-based polling mechanism. */ if (pipe(devc->pipe_fds)) { /* TODO: Better error message. */ sr_err("%s: pipe() failed", __func__); return SR_ERR; } devc->channel = g_io_channel_unix_new(devc->pipe_fds[0]); g_io_channel_set_flags(devc->channel, G_IO_FLAG_NONBLOCK, NULL); /* Set channel encoding to binary (default is UTF-8). */ g_io_channel_set_encoding(devc->channel, NULL, NULL); /* Make channels to unbuffered. */ g_io_channel_set_buffered(devc->channel, FALSE); sr_session_source_add_channel(devc->channel, G_IO_IN | G_IO_ERR, 40, receive_data, devc); /* Send header packet to the session bus. */ std_session_send_df_header(cb_data, DRIVER_LOG_DOMAIN); /* We use this timestamp to decide how many more samples to send. */ devc->starttime = g_get_monotonic_time(); return SR_OK; } static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *const devc = sdi->priv; struct sr_datafeed_packet packet; (void)cb_data; sr_dbg("Stopping aquisition."); sr_session_source_remove_channel(devc->channel); g_io_channel_shutdown(devc->channel, FALSE, NULL); g_io_channel_unref(devc->channel); devc->channel = NULL; /* Send last packet. */ packet.type = SR_DF_END; sr_session_send(devc->cb_data, &packet); return SR_OK; } SR_PRIV struct sr_dev_driver demo_driver_info = { .name = "demo", .longname = "Demo driver and pattern generator", .api_version = 1, .init = hw_init, .cleanup = hw_cleanup, .scan = hw_scan, .dev_list = hw_dev_list, .dev_clear = clear_instances, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = hw_dev_open, .dev_close = hw_dev_close, .dev_acquisition_start = hw_dev_acquisition_start, .dev_acquisition_stop = hw_dev_acquisition_stop, .priv = NULL, };