/* * This file is part of the sigrok project. * * Copyright (C) 2010-2012 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include "config.h" #include "libsigrok.h" #include "libsigrok-internal.h" #include "analyzer.h" #define USB_VENDOR 0x0c12 #define VENDOR_NAME "ZEROPLUS" #define MODEL_NAME "Logic Cube LAP-C" #define MODEL_VERSION NULL #define NUM_PROBES 16 #define USB_INTERFACE 0 #define USB_CONFIGURATION 1 #define NUM_TRIGGER_STAGES 4 #define TRIGGER_TYPES "01" #define PACKET_SIZE 2048 /* ?? */ typedef struct { unsigned short vid; unsigned short pid; char *model_name; unsigned int channels; unsigned int sample_depth; /* In Ksamples/channel */ unsigned int max_sampling_freq; } model_t; /* * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the * same 128K sample depth. */ static model_t zeroplus_models[] = { {0x0c12, 0x7009, "LAP-C(16064)", 16, 64, 100}, {0x0c12, 0x700A, "LAP-C(16128)", 16, 128, 200}, /* TODO: we don't know anything about these {0x0c12, 0x700B, "LAP-C(32128)", 32, 128, 200}, {0x0c12, 0x700C, "LAP-C(321000)", 32, 1024, 200}, {0x0c12, 0x700D, "LAP-C(322000)", 32, 2048, 200}, */ {0x0c12, 0x700E, "LAP-C(16032)", 16, 32, 100}, {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200}, { 0, 0, 0, 0, 0, 0 } }; static const int hwcaps[] = { SR_HWCAP_LOGIC_ANALYZER, SR_HWCAP_SAMPLERATE, SR_HWCAP_CAPTURE_RATIO, /* These are really implemented in the driver, not the hardware. */ SR_HWCAP_LIMIT_SAMPLES, 0, }; /* * ZEROPLUS LAP-C (16032) numbers the 16 probes A0-A7 and B0-B7. * We currently ignore other untested/unsupported devices here. */ static const char *probe_names[NUM_PROBES + 1] = { "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7", NULL, }; /* List of struct sr_dev_inst, maintained by dev_open()/dev_close(). */ SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info; static struct sr_dev_driver *zdi = &zeroplus_logic_cube_driver_info; static libusb_context *usb_context = NULL; /* * The hardware supports more samplerates than these, but these are the * options hardcoded into the vendor's Windows GUI. */ /* * TODO: We shouldn't support 150MHz and 200MHz on devices that don't go up * that high. */ static const uint64_t supported_samplerates[] = { SR_HZ(100), SR_HZ(500), SR_KHZ(1), SR_KHZ(5), SR_KHZ(25), SR_KHZ(50), SR_KHZ(100), SR_KHZ(200), SR_KHZ(400), SR_KHZ(800), SR_MHZ(1), SR_MHZ(10), SR_MHZ(25), SR_MHZ(50), SR_MHZ(80), SR_MHZ(100), SR_MHZ(150), SR_MHZ(200), 0, }; static const struct sr_samplerates samplerates = { 0, 0, 0, supported_samplerates, }; /* Private driver context. */ struct drv_context { GSList *instances; }; /* Private, per-device-instance driver context. */ struct dev_context { uint64_t cur_samplerate; uint64_t limit_samples; int num_channels; /* TODO: This isn't initialized before it's needed :( */ uint64_t memory_size; uint8_t probe_mask; uint8_t trigger_mask[NUM_TRIGGER_STAGES]; uint8_t trigger_value[NUM_TRIGGER_STAGES]; // uint8_t trigger_buffer[NUM_TRIGGER_STAGES]; /* TODO: this belongs in the device instance */ struct sr_usb_dev_inst *usb; }; static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap, const void *value); static int hw_dev_close(struct sr_dev_inst *sdi); static unsigned int get_memory_size(int type) { if (type == MEMORY_SIZE_8K) return 8 * 1024; else if (type == MEMORY_SIZE_64K) return 64 * 1024; else if (type == MEMORY_SIZE_128K) return 128 * 1024; else if (type == MEMORY_SIZE_512K) return 512 * 1024; else return 0; } static int configure_probes(const struct sr_dev_inst *sdi) { struct dev_context *devc; const struct sr_probe *probe; const GSList *l; int probe_bit, stage, i; char *tc; /* Note: sdi and sdi->priv are non-NULL, the caller checked this. */ devc = sdi->priv; devc->probe_mask = 0; for (i = 0; i < NUM_TRIGGER_STAGES; i++) { devc->trigger_mask[i] = 0; devc->trigger_value[i] = 0; } stage = -1; for (l = sdi->probes; l; l = l->next) { probe = (struct sr_probe *)l->data; if (probe->enabled == FALSE) continue; probe_bit = 1 << (probe->index); devc->probe_mask |= probe_bit; if (probe->trigger) { stage = 0; for (tc = probe->trigger; *tc; tc++) { devc->trigger_mask[stage] |= probe_bit; if (*tc == '1') devc->trigger_value[stage] |= probe_bit; stage++; if (stage > NUM_TRIGGER_STAGES) return SR_ERR; } } } return SR_OK; } static int clear_instances(void) { GSList *l; struct sr_dev_inst *sdi; struct drv_context *drvc; struct dev_context *devc; drvc = zdi->priv; for (l = drvc->instances; l; l = l->next) { sdi = l->data; if (!(devc = sdi->priv)) { /* Log error, but continue cleaning up the rest. */ sr_err("zeroplus: %s: sdi->priv was NULL, continuing", __func__); continue; } sr_usb_dev_inst_free(devc->usb); /* Properly close all devices... */ hw_dev_close(sdi); /* ...and free all their memory. */ sr_dev_inst_free(sdi); } g_slist_free(drvc->instances); drvc->instances = NULL; return SR_OK; } /* * API callbacks */ static int hw_init(void) { struct drv_context *drvc; if (!(drvc = g_try_malloc0(sizeof(struct drv_context)))) { sr_err("zeroplus: driver context malloc failed."); return SR_ERR; } zdi->priv = drvc; if (libusb_init(&usb_context) != 0) { sr_err("zp: Failed to initialize USB."); return 0; } return SR_OK; } static GSList *hw_scan(GSList *options) { struct sr_dev_inst *sdi; struct sr_probe *probe; struct drv_context *drvc; struct dev_context *devc; model_t *prof; struct libusb_device_descriptor des; libusb_device **devlist; GSList *devices; int ret, devcnt, i, j; (void)options; drvc = zdi->priv; devices = NULL; clear_instances(); /* Find all ZEROPLUS analyzers and add them to device list. */ devcnt = 0; libusb_get_device_list(usb_context, &devlist); /* TODO: Errors. */ for (i = 0; devlist[i]; i++) { ret = libusb_get_device_descriptor(devlist[i], &des); if (ret != 0) { sr_err("zp: failed to get device descriptor: %d", ret); continue; } prof = NULL; for (j = 0; j < zeroplus_models[j].vid; j++) { if (des.idVendor == zeroplus_models[j].vid && des.idProduct == zeroplus_models[j].pid) { prof = &zeroplus_models[j]; } } /* Skip if the device was not found */ if (!prof) continue; sr_info("zp: Found ZEROPLUS model %s", prof->model_name); /* Register the device with libsigrok. */ if (!(sdi = sr_dev_inst_new(devcnt, SR_ST_INACTIVE, VENDOR_NAME, prof->model_name, NULL))) { sr_err("zp: %s: sr_dev_inst_new failed", __func__); return NULL; } sdi->driver = zdi; /* Allocate memory for our private driver context. */ if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) { sr_err("zp: %s: devc malloc failed", __func__); return 0; } sdi->priv = devc; devc->num_channels = prof->channels; devc->memory_size = prof->sample_depth * 1024; // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES); /* Fill in probelist according to this device's profile. */ for (j = 0; j < devc->num_channels; j++) { if (!(probe = sr_probe_new(j, SR_PROBE_LOGIC, TRUE, probe_names[j]))) return NULL; sdi->probes = g_slist_append(sdi->probes, probe); } devices = g_slist_append(devices, sdi); drvc->instances = g_slist_append(drvc->instances, sdi); devc->usb = sr_usb_dev_inst_new( libusb_get_bus_number(devlist[i]), libusb_get_device_address(devlist[i]), NULL); devcnt++; } libusb_free_device_list(devlist, 1); return devices; } static GSList *hw_dev_list(void) { struct drv_context *drvc; drvc = zdi->priv; return drvc->instances; } static int hw_dev_open(struct sr_dev_inst *sdi) { struct dev_context *devc; libusb_device **devlist, *dev; struct libusb_device_descriptor des; int device_count, ret, i; if (!(devc = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return SR_ERR_ARG; } device_count = libusb_get_device_list(usb_context, &devlist); if (device_count < 0) { sr_err("zp: Failed to retrieve device list"); return SR_ERR; } dev = NULL; for (i = 0; i < device_count; i++) { if ((ret = libusb_get_device_descriptor(devlist[i], &des))) { sr_err("fx2lafw: Failed to get device descriptor: %d.", ret); continue; } if (libusb_get_bus_number(devlist[i]) == devc->usb->bus && libusb_get_device_address(devlist[i]) == devc->usb->address) { dev = devlist[i]; break; } } if (!dev) { sr_err("device on bus %d address %d disappeared!", devc->usb->bus, devc->usb->address); return SR_ERR; } if (!(ret = libusb_open(dev, &(devc->usb->devhdl)))) { sdi->status = SR_ST_ACTIVE; sr_info("zp: opened device %d on %d.%d interface %d", sdi->index, devc->usb->bus, devc->usb->address, USB_INTERFACE); } else { sr_err("zp: failed to open device: %d", ret); return SR_ERR; } ret = libusb_set_configuration(devc->usb->devhdl, USB_CONFIGURATION); if (ret < 0) { sr_err("zp: Unable to set USB configuration %d: %d", USB_CONFIGURATION, ret); return SR_ERR; } ret = libusb_claim_interface(devc->usb->devhdl, USB_INTERFACE); if (ret != 0) { sr_err("zp: Unable to claim interface: %d", ret); return SR_ERR; } analyzer_reset(devc->usb->devhdl); analyzer_initialize(devc->usb->devhdl); analyzer_set_memory_size(MEMORY_SIZE_512K); // analyzer_set_freq(g_freq, g_freq_scale); analyzer_set_trigger_count(1); // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger) // * get_memory_size(g_memory_size)) / 100) >> 2); analyzer_set_ramsize_trigger_address( (100 * get_memory_size(MEMORY_SIZE_512K) / 100) >> 2); #if 0 if (g_double_mode == 1) analyzer_set_compression(COMPRESSION_DOUBLE); else if (g_compression == 1) analyzer_set_compression(COMPRESSION_ENABLE); else #endif analyzer_set_compression(COMPRESSION_NONE); if (devc->cur_samplerate == 0) { /* Samplerate hasn't been set. Default to the slowest one. */ if (hw_dev_config_set(sdi, SR_HWCAP_SAMPLERATE, &samplerates.list[0]) == SR_ERR) return SR_ERR; } return SR_OK; } static int hw_dev_close(struct sr_dev_inst *sdi) { struct dev_context *devc; if (!(devc = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return SR_ERR; } if (!devc->usb->devhdl) return SR_ERR; sr_info("zp: closing device %d on %d.%d interface %d", sdi->index, devc->usb->bus, devc->usb->address, USB_INTERFACE); libusb_release_interface(devc->usb->devhdl, USB_INTERFACE); libusb_reset_device(devc->usb->devhdl); libusb_close(devc->usb->devhdl); devc->usb->devhdl = NULL; sdi->status = SR_ST_INACTIVE; return SR_OK; } static int hw_cleanup(void) { struct drv_context *drvc; if (!(drvc = zdi->priv)) return SR_OK; clear_instances(); if (usb_context) libusb_exit(usb_context); usb_context = NULL; return SR_OK; } static int hw_info_get(int info_id, const void **data, const struct sr_dev_inst *sdi) { struct dev_context *devc; switch (info_id) { case SR_DI_HWCAPS: *data = hwcaps; break; case SR_DI_NUM_PROBES: if (sdi) { devc = sdi->priv; *data = GINT_TO_POINTER(devc->num_channels); sr_spew("zp: %s: Returning number of channels: %d.", __func__, devc->num_channels); } else return SR_ERR; break; case SR_DI_PROBE_NAMES: *data = probe_names; sr_spew("zp: %s: Returning probenames.", __func__); break; case SR_DI_SAMPLERATES: *data = &samplerates; sr_spew("zp: %s: Returning samplerates.", __func__); break; case SR_DI_TRIGGER_TYPES: *data = TRIGGER_TYPES; sr_spew("zp: %s: Returning triggertypes: %s.", __func__, TRIGGER_TYPES); break; case SR_DI_CUR_SAMPLERATE: if (sdi) { devc = sdi->priv; *data = &devc->cur_samplerate; sr_spew("zp: %s: Returning samplerate: %" PRIu64 "Hz.", __func__, devc->cur_samplerate); } else return SR_ERR; break; default: return SR_ERR_ARG; } return SR_OK; } static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate) { struct dev_context *devc; if (!sdi) { sr_err("zp: %s: sdi was NULL", __func__); return SR_ERR_ARG; } if (!(devc = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return SR_ERR_ARG; } sr_info("zp: Setting samplerate to %" PRIu64 "Hz.", samplerate); if (samplerate > SR_MHZ(1)) analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ); else if (samplerate > SR_KHZ(1)) analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ); else analyzer_set_freq(samplerate, FREQ_SCALE_HZ); devc->cur_samplerate = samplerate; return SR_OK; } static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap, const void *value) { struct dev_context *devc; if (!(devc = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return SR_ERR_ARG; } switch (hwcap) { case SR_HWCAP_SAMPLERATE: return set_samplerate(sdi, *(const uint64_t *)value); case SR_HWCAP_LIMIT_SAMPLES: devc->limit_samples = *(const uint64_t *)value; return SR_OK; default: return SR_ERR; } } static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) { struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; struct sr_datafeed_header header; struct sr_datafeed_meta_logic meta; uint64_t samples_read; int res; unsigned int packet_num; unsigned char *buf; struct dev_context *devc; if (!(devc = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return SR_ERR_ARG; } if (configure_probes(sdi) != SR_OK) { sr_err("zp: failed to configured probes"); return SR_ERR; } /* push configured settings to device */ analyzer_configure(devc->usb->devhdl); analyzer_start(devc->usb->devhdl); sr_info("zp: Waiting for data"); analyzer_wait_data(devc->usb->devhdl); sr_info("zp: Stop address = 0x%x", analyzer_get_stop_address(devc->usb->devhdl)); sr_info("zp: Now address = 0x%x", analyzer_get_now_address(devc->usb->devhdl)); sr_info("zp: Trigger address = 0x%x", analyzer_get_trigger_address(devc->usb->devhdl)); packet.type = SR_DF_HEADER; packet.payload = &header; header.feed_version = 1; gettimeofday(&header.starttime, NULL); sr_session_send(cb_data, &packet); /* Send metadata about the SR_DF_LOGIC packets to come. */ packet.type = SR_DF_META_LOGIC; packet.payload = &meta; meta.samplerate = devc->cur_samplerate; meta.num_probes = devc->num_channels; sr_session_send(cb_data, &packet); if (!(buf = g_try_malloc(PACKET_SIZE))) { sr_err("zp: %s: buf malloc failed", __func__); return SR_ERR_MALLOC; } samples_read = 0; analyzer_read_start(devc->usb->devhdl); /* Send the incoming transfer to the session bus. */ for (packet_num = 0; packet_num < (devc->memory_size * 4 / PACKET_SIZE); packet_num++) { res = analyzer_read_data(devc->usb->devhdl, buf, PACKET_SIZE); sr_info("zp: Tried to read %llx bytes, actually read %x bytes", PACKET_SIZE, res); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = PACKET_SIZE; logic.unitsize = 4; logic.data = buf; sr_session_send(cb_data, &packet); samples_read += res / 4; } analyzer_read_stop(devc->usb->devhdl); g_free(buf); packet.type = SR_DF_END; sr_session_send(cb_data, &packet); return SR_OK; } /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */ static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi, void *cb_data) { struct sr_datafeed_packet packet; struct dev_context *devc; packet.type = SR_DF_END; sr_session_send(cb_data, &packet); if (!(devc = sdi->priv)) { sr_err("zp: %s: sdi->priv was NULL", __func__); return SR_ERR_BUG; } analyzer_reset(devc->usb->devhdl); /* TODO: Need to cancel and free any queued up transfers. */ return SR_OK; } SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = { .name = "zeroplus-logic-cube", .longname = "ZEROPLUS Logic Cube LAP-C series", .api_version = 1, .init = hw_init, .cleanup = hw_cleanup, .scan = hw_scan, .dev_list = hw_dev_list, .dev_clear = hw_cleanup, .dev_open = hw_dev_open, .dev_close = hw_dev_close, .info_get = hw_info_get, .dev_config_set = hw_dev_config_set, .dev_acquisition_start = hw_dev_acquisition_start, .dev_acquisition_stop = hw_dev_acquisition_stop, .priv = NULL, };