/* * This file is part of the libsigrok project. * * Copyright (C) 2012 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include "libsigrok-internal.h" #include "protocol.h" #define JOB_TIMEOUT 300 #define INFINITE_INTERVAL INT_MAX #define SAMPLERATE_INTERVAL -1 static const struct agdmm_job *job_current(const struct dev_context *devc) { return &devc->jobs[devc->current_job]; } static void job_done(struct dev_context *devc) { devc->job_running = FALSE; } static void job_again(struct dev_context *devc) { devc->job_again = TRUE; } static gboolean job_is_running(const struct dev_context *devc) { return devc->job_running; } static gboolean job_in_interval(const struct dev_context *devc) { int64_t job_start = devc->jobs_start[devc->current_job]; int64_t now = g_get_monotonic_time() / 1000; int interval = job_current(devc)->interval; if (interval == SAMPLERATE_INTERVAL) interval = 1000 / devc->cur_samplerate; return (now - job_start) < interval || interval == INFINITE_INTERVAL; } static gboolean job_has_timeout(const struct dev_context *devc) { int64_t job_start = devc->jobs_start[devc->current_job]; int64_t now = g_get_monotonic_time() / 1000; return job_is_running(devc) && (now - job_start) > JOB_TIMEOUT; } static const struct agdmm_job *job_next(struct dev_context *devc) { int current_job = devc->current_job; do { devc->current_job++; if (!job_current(devc)->send) devc->current_job = 0; } while (job_in_interval(devc) && devc->current_job != current_job); return job_current(devc); } static void job_run_again(const struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; devc->job_again = FALSE; devc->job_running = TRUE; if (job_current(devc)->send(sdi) == SR_ERR_NA) job_done(devc); } static void job_run(const struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; int64_t now = g_get_monotonic_time() / 1000; devc->jobs_start[devc->current_job] = now; job_run_again(sdi); } static void dispatch(const struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; if (devc->job_again) { job_run_again(sdi); return; } if (!job_is_running(devc)) job_next(devc); else if (job_has_timeout(devc)) job_done(devc); if (!job_is_running(devc) && !job_in_interval(devc)) job_run(sdi); } static gboolean receive_line(const struct sr_dev_inst *sdi) { struct dev_context *devc; const struct agdmm_recv *recvs, *recv; GRegex *reg; GMatchInfo *match; gboolean stop = FALSE; int i; devc = sdi->priv; /* Strip CRLF */ while (devc->buflen) { if (*(devc->buf + devc->buflen - 1) == '\r' || *(devc->buf + devc->buflen - 1) == '\n') *(devc->buf + --devc->buflen) = '\0'; else break; } sr_spew("Received '%s'.", devc->buf); recv = NULL; recvs = devc->profile->recvs; for (i = 0; (&recvs[i])->recv_regex; i++) { reg = g_regex_new((&recvs[i])->recv_regex, 0, 0, NULL); if (g_regex_match(reg, (char *)devc->buf, 0, &match)) { recv = &recvs[i]; break; } g_match_info_unref(match); g_regex_unref(reg); } if (recv) { enum job_type type = recv->recv(sdi, match); if (type == job_current(devc)->type) job_done(devc); else if (type == JOB_AGAIN) job_again(devc); else if (type == JOB_STOP) stop = TRUE; g_match_info_unref(match); g_regex_unref(reg); } else sr_dbg("Unknown line '%s'.", devc->buf); /* Done with this. */ devc->buflen = 0; return stop; } SR_PRIV int agdmm_receive_data(int fd, int revents, void *cb_data) { struct sr_dev_inst *sdi; struct dev_context *devc; struct sr_serial_dev_inst *serial; gboolean stop = FALSE; int len; (void)fd; if (!(sdi = cb_data)) return TRUE; if (!(devc = sdi->priv)) return TRUE; serial = sdi->conn; if (revents == G_IO_IN) { /* Serial data arrived. */ while (AGDMM_BUFSIZE - devc->buflen - 1 > 0) { len = serial_read_nonblocking(serial, devc->buf + devc->buflen, 1); if (len < 1) break; devc->buflen += len; *(devc->buf + devc->buflen) = '\0'; if (*(devc->buf + devc->buflen - 1) == '\n') { /* End of line */ stop = receive_line(sdi); break; } } } if (sr_sw_limits_check(&devc->limits) || stop) sr_dev_acquisition_stop(sdi); else dispatch(sdi); return TRUE; } static int agdmm_send(const struct sr_dev_inst *sdi, const char *cmd, ...) { struct sr_serial_dev_inst *serial; va_list args; char buf[32]; serial = sdi->conn; va_start(args, cmd); vsnprintf(buf, sizeof(buf) - 3, cmd, args); va_end(args); sr_spew("Sending '%s'.", buf); if (!strncmp(buf, "*IDN?", 5)) strcat(buf, "\r\n"); else strcat(buf, "\n\r\n"); if (serial_write_blocking(serial, buf, strlen(buf), SERIAL_WRITE_TIMEOUT_MS) < (int)strlen(buf)) { sr_err("Failed to send."); return SR_ERR; } return SR_OK; } static int send_stat(const struct sr_dev_inst *sdi) { return agdmm_send(sdi, "STAT?"); } static int recv_stat_u123x(const struct sr_dev_inst *sdi, GMatchInfo *match) { struct dev_context *devc; char *s; devc = sdi->priv; s = g_match_info_fetch(match, 1); sr_spew("STAT response '%s'.", s); /* Max, Min or Avg mode -- no way to tell which, so we'll * set both flags to denote it's not a normal measurement. */ if (s[0] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN; else devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN); if (s[1] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE; else devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE; /* Triggered or auto hold modes. */ if (s[2] == '1' || s[3] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_HOLD; else devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD; /* Temp/aux mode. */ if (s[7] == '1') devc->mode_tempaux = TRUE; else devc->mode_tempaux = FALSE; /* Continuity mode. */ if (s[16] == '1') devc->mode_continuity = TRUE; else devc->mode_continuity = FALSE; g_free(s); return JOB_STAT; } static int recv_stat_u124x(const struct sr_dev_inst *sdi, GMatchInfo *match) { struct dev_context *devc; char *s; devc = sdi->priv; s = g_match_info_fetch(match, 1); sr_spew("STAT response '%s'.", s); /* Max, Min or Avg mode -- no way to tell which, so we'll * set both flags to denote it's not a normal measurement. */ if (s[0] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN; else devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN); if (s[1] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE; else devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE; /* Hold mode. */ if (s[7] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_HOLD; else devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD; g_free(s); return JOB_STAT; } static int recv_stat_u124xc(const struct sr_dev_inst *sdi, GMatchInfo *match) { struct dev_context *devc; char *s; devc = sdi->priv; s = g_match_info_fetch(match, 1); sr_spew("STAT response '%s'.", s); /* Max, Min or Avg mode -- no way to tell which, so we'll * set both flags to denote it's not a normal measurement. */ if (s[0] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG; else devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG); /* Null function. */ if (s[1] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE; else devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE; /* Triggered or auto hold modes. */ if (s[7] == '1' || s[11] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_HOLD; else devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD; g_free(s); return JOB_STAT; } static int recv_stat_u125x(const struct sr_dev_inst *sdi, GMatchInfo *match) { struct dev_context *devc; char *s; devc = sdi->priv; s = g_match_info_fetch(match, 1); sr_spew("STAT response '%s'.", s); /* dBm/dBV modes. */ if ((s[2] & ~0x20) == 'M') devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_MW; else if ((s[2] & ~0x20) == 'V') devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_VOLT; else devc->mode_dbm_dbv = 0; /* Peak hold mode. */ if (s[4] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_MAX; else devc->cur_mqflags[0] &= ~SR_MQFLAG_MAX; /* Triggered hold mode. */ if (s[7] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_HOLD; else devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD; g_free(s); return JOB_STAT; } static int recv_stat_u128x(const struct sr_dev_inst *sdi, GMatchInfo *match) { struct dev_context *devc; char *s; devc = sdi->priv; s = g_match_info_fetch(match, 1); sr_spew("STAT response '%s'.", s); /* Max, Min or Avg mode -- no way to tell which, so we'll * set both flags to denote it's not a normal measurement. */ if (s[0] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG; else devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG); /* dBm/dBV modes. */ if ((s[2] & ~0x20) == 'M') devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_MW; else if ((s[2] & ~0x20) == 'V') devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_VOLT; else devc->mode_dbm_dbv = 0; /* Peak hold mode. */ if (s[4] == '4') devc->cur_mqflags[0] |= SR_MQFLAG_MAX; else devc->cur_mqflags[0] &= ~SR_MQFLAG_MAX; /* Null function. */ if (s[1] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE; else devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE; /* Triggered or auto hold modes. */ if (s[7] == '1' || s[11] == '1') devc->cur_mqflags[0] |= SR_MQFLAG_HOLD; else devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD; g_free(s); return JOB_STAT; } static int send_fetc(const struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; if (devc->mode_squarewave) return SR_ERR_NA; if (devc->cur_channel->index > 0) return agdmm_send(sdi, "FETC? @%d", devc->cur_channel->index + 1); else return agdmm_send(sdi, "FETC?"); } static int recv_fetc(const struct sr_dev_inst *sdi, GMatchInfo *match) { struct dev_context *devc; struct sr_datafeed_packet packet; struct sr_datafeed_analog analog; struct sr_analog_encoding encoding; struct sr_analog_meaning meaning; struct sr_analog_spec spec; struct sr_channel *prev_chan; float fvalue; const char *s; char *mstr; int i, exp; sr_spew("FETC reply '%s'.", g_match_info_get_string(match)); devc = sdi->priv; i = devc->cur_channel->index; if (devc->cur_mq[i] == -1) /* This detects when channel P2 is reporting TEMP as an identical * copy of channel P3. In this case, we just skip P2. */ goto skip_value; s = g_match_info_get_string(match); if (!strcmp(s, "-9.90000000E+37") || !strcmp(s, "+9.90000000E+37")) { /* An invalid measurement shows up on the display as "O.L", but * comes through like this. Since comparing 38-digit floats * is rather problematic, we'll cut through this here. */ fvalue = NAN; } else { mstr = g_match_info_fetch(match, 1); if (sr_atof_ascii(mstr, &fvalue) != SR_OK) { g_free(mstr); sr_dbg("Invalid float."); return SR_ERR; } g_free(mstr); if (devc->cur_exponent[i] != 0) fvalue *= powf(10, devc->cur_exponent[i]); } if (devc->cur_unit[i] == SR_UNIT_DECIBEL_MW || devc->cur_unit[i] == SR_UNIT_DECIBEL_VOLT || devc->cur_unit[i] == SR_UNIT_PERCENTAGE) { mstr = g_match_info_fetch(match, 2); if (mstr && sr_atoi(mstr, &exp) == SR_OK) { devc->cur_digits[i] = MIN(4 - exp, devc->cur_digits[i]); devc->cur_encoding[i] = MIN(5 - exp, devc->cur_encoding[i]); } g_free(mstr); } sr_analog_init(&analog, &encoding, &meaning, &spec, devc->cur_digits[i] - devc->cur_exponent[i]); analog.meaning->mq = devc->cur_mq[i]; analog.meaning->unit = devc->cur_unit[i]; analog.meaning->mqflags = devc->cur_mqflags[i]; analog.meaning->channels = g_slist_append(NULL, devc->cur_channel); analog.num_samples = 1; analog.data = &fvalue; encoding.digits = devc->cur_encoding[i] - devc->cur_exponent[i]; packet.type = SR_DF_ANALOG; packet.payload = &analog; sr_session_send(sdi, &packet); g_slist_free(analog.meaning->channels); sr_sw_limits_update_samples_read(&devc->limits, 1); skip_value: prev_chan = devc->cur_channel; devc->cur_channel = sr_next_enabled_channel(sdi, devc->cur_channel); if (devc->cur_channel->index > prev_chan->index) return JOB_AGAIN; else return JOB_FETC; } static int send_conf(const struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; /* Do not try to send CONF? for internal temperature channel. */ if (devc->cur_conf->index >= MIN(devc->profile->nb_channels, 2)) return SR_ERR_NA; if (devc->cur_conf->index > 0) return agdmm_send(sdi, "CONF? @%d", devc->cur_conf->index + 1); else return agdmm_send(sdi, "CONF?"); } static int recv_conf_u123x(const struct sr_dev_inst *sdi, GMatchInfo *match) { struct dev_context *devc; char *mstr, *rstr; int i, resolution; sr_spew("CONF? response '%s'.", g_match_info_get_string(match)); devc = sdi->priv; i = devc->cur_conf->index; rstr = g_match_info_fetch(match, 2); if (rstr) sr_atoi(rstr, &resolution); g_free(rstr); mstr = g_match_info_fetch(match, 1); if (!strcmp(mstr, "V")) { devc->cur_mq[i] = SR_MQ_VOLTAGE; devc->cur_unit[i] = SR_UNIT_VOLT; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; devc->cur_digits[i] = 4 - resolution; } else if (!strcmp(mstr, "MV")) { if (devc->mode_tempaux) { devc->cur_mq[i] = SR_MQ_TEMPERATURE; /* No way to detect whether Fahrenheit or Celsius * is used, so we'll just default to Celsius. */ devc->cur_unit[i] = SR_UNIT_CELSIUS; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; devc->cur_digits[i] = 1; } else { devc->cur_mq[i] = SR_MQ_VOLTAGE; devc->cur_unit[i] = SR_UNIT_VOLT; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = -3; devc->cur_digits[i] = 5 - resolution; } } else if (!strcmp(mstr, "A")) { devc->cur_mq[i] = SR_MQ_CURRENT; devc->cur_unit[i] = SR_UNIT_AMPERE; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; devc->cur_digits[i] = 3 - resolution; } else if (!strcmp(mstr, "UA")) { devc->cur_mq[i] = SR_MQ_CURRENT; devc->cur_unit[i] = SR_UNIT_AMPERE; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = -6; devc->cur_digits[i] = 8 - resolution; } else if (!strcmp(mstr, "FREQ")) { devc->cur_mq[i] = SR_MQ_FREQUENCY; devc->cur_unit[i] = SR_UNIT_HERTZ; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; devc->cur_digits[i] = 2 - resolution; } else if (!strcmp(mstr, "RES")) { if (devc->mode_continuity) { devc->cur_mq[i] = SR_MQ_CONTINUITY; devc->cur_unit[i] = SR_UNIT_BOOLEAN; } else { devc->cur_mq[i] = SR_MQ_RESISTANCE; devc->cur_unit[i] = SR_UNIT_OHM; } devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; devc->cur_digits[i] = 1 - resolution; } else if (!strcmp(mstr, "DIOD")) { devc->cur_mq[i] = SR_MQ_VOLTAGE; devc->cur_unit[i] = SR_UNIT_VOLT; devc->cur_mqflags[i] = SR_MQFLAG_DIODE | SR_MQFLAG_DC; devc->cur_exponent[i] = 0; devc->cur_digits[i] = 3; } else if (!strcmp(mstr, "CAP")) { devc->cur_mq[i] = SR_MQ_CAPACITANCE; devc->cur_unit[i] = SR_UNIT_FARAD; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; devc->cur_digits[i] = 9 - resolution; } else sr_dbg("Unknown first argument."); g_free(mstr); /* This is based on guess, supposing similarity with other models. */ devc->cur_encoding[i] = devc->cur_digits[i] + 1; if (g_match_info_get_match_count(match) == 4) { mstr = g_match_info_fetch(match, 3); /* Third value, if present, is always AC or DC. */ if (!strcmp(mstr, "AC")) { devc->cur_mqflags[i] |= SR_MQFLAG_AC; if (devc->cur_mq[i] == SR_MQ_VOLTAGE) devc->cur_mqflags[i] |= SR_MQFLAG_RMS; } else if (!strcmp(mstr, "DC")) { devc->cur_mqflags[i] |= SR_MQFLAG_DC; } else { sr_dbg("Unknown first argument '%s'.", mstr); } g_free(mstr); } else devc->cur_mqflags[i] &= ~(SR_MQFLAG_AC | SR_MQFLAG_DC); return JOB_CONF; } static int recv_conf_u124x_5x(const struct sr_dev_inst *sdi, GMatchInfo *match) { struct dev_context *devc; char *mstr, *rstr, *m2; int i, resolution; sr_spew("CONF? response '%s'.", g_match_info_get_string(match)); devc = sdi->priv; i = devc->cur_conf->index; devc->mode_squarewave = 0; rstr = g_match_info_fetch(match, 4); if (rstr && sr_atoi(rstr, &resolution) == SR_OK) { devc->cur_digits[i] = -resolution; devc->cur_encoding[i] = -resolution + 1; } g_free(rstr); mstr = g_match_info_fetch(match, 1); if (!strncmp(mstr, "VOLT", 4)) { devc->cur_mq[i] = SR_MQ_VOLTAGE; devc->cur_unit[i] = SR_UNIT_VOLT; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; if (i == 0 && devc->mode_dbm_dbv) { devc->cur_unit[i] = devc->mode_dbm_dbv; devc->cur_digits[i] = 3; devc->cur_encoding[i] = 4; } if (mstr[4] == ':') { if (!strncmp(mstr + 5, "ACDC", 4)) { /* AC + DC offset */ devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_DC | SR_MQFLAG_RMS; } else if (!strncmp(mstr + 5, "AC", 2)) { devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_RMS; } else if (!strncmp(mstr + 5, "DC", 2)) { devc->cur_mqflags[i] |= SR_MQFLAG_DC; } else if (!strncmp(mstr + 5, "HRAT", 4)) { devc->cur_mq[i] = SR_MQ_HARMONIC_RATIO; devc->cur_unit[i] = SR_UNIT_PERCENTAGE; devc->cur_digits[i] = 2; devc->cur_encoding[i] = 3; } } else devc->cur_mqflags[i] |= SR_MQFLAG_DC; } else if (!strncmp(mstr, "CURR", 4)) { devc->cur_mq[i] = SR_MQ_CURRENT; devc->cur_unit[i] = SR_UNIT_AMPERE; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; if (mstr[4] == ':') { if (!strncmp(mstr + 5, "ACDC", 4)) { /* AC + DC offset */ devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_DC | SR_MQFLAG_RMS; } else if (!strncmp(mstr + 5, "AC", 2)) { devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_RMS; } else if (!strncmp(mstr + 5, "DC", 2)) { devc->cur_mqflags[i] |= SR_MQFLAG_DC; } } else devc->cur_mqflags[i] |= SR_MQFLAG_DC; } else if (!strcmp(mstr, "RES")) { devc->cur_mq[i] = SR_MQ_RESISTANCE; devc->cur_unit[i] = SR_UNIT_OHM; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; } else if (!strcmp(mstr, "COND")) { devc->cur_mq[i] = SR_MQ_CONDUCTANCE; devc->cur_unit[i] = SR_UNIT_SIEMENS; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; } else if (!strcmp(mstr, "CAP")) { devc->cur_mq[i] = SR_MQ_CAPACITANCE; devc->cur_unit[i] = SR_UNIT_FARAD; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; } else if (!strncmp(mstr, "FREQ", 4) || !strncmp(mstr, "FC1", 3)) { devc->cur_mq[i] = SR_MQ_FREQUENCY; devc->cur_unit[i] = SR_UNIT_HERTZ; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; } else if (!strncmp(mstr, "PULS:PWID", 9)) { devc->cur_mq[i] = SR_MQ_PULSE_WIDTH; devc->cur_unit[i] = SR_UNIT_SECOND; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; devc->cur_encoding[i] = MIN(devc->cur_encoding[i], 6); } else if (!strncmp(mstr, "PULS:PDUT", 9)) { devc->cur_mq[i] = SR_MQ_DUTY_CYCLE; devc->cur_unit[i] = SR_UNIT_PERCENTAGE; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; devc->cur_digits[i] = 3; devc->cur_encoding[i] = 4; } else if (!strcmp(mstr, "CONT")) { devc->cur_mq[i] = SR_MQ_CONTINUITY; devc->cur_unit[i] = SR_UNIT_OHM; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; } else if (!strcmp(mstr, "DIOD")) { devc->cur_mq[i] = SR_MQ_VOLTAGE; devc->cur_unit[i] = SR_UNIT_VOLT; devc->cur_mqflags[i] = SR_MQFLAG_DIODE | SR_MQFLAG_DC; devc->cur_exponent[i] = 0; if (devc->profile->model == KEYSIGHT_U1281 || devc->profile->model == KEYSIGHT_U1282) { devc->cur_digits[i] = 4; devc->cur_encoding[i] = 5; } else { devc->cur_digits[i] = 3; devc->cur_encoding[i] = 4; } } else if (!strncmp(mstr, "T1", 2) || !strncmp(mstr, "T2", 2) || !strncmp(mstr, "TEMP", 4)) { devc->cur_mq[i] = SR_MQ_TEMPERATURE; m2 = g_match_info_fetch(match, 2); if (!m2 && devc->profile->nb_channels == 3) /* * TEMP without param is for secondary display (channel P2) * and is identical to channel P3, so discard it. */ devc->cur_mq[i] = -1; else if (m2 && !strcmp(m2, "FAR")) devc->cur_unit[i] = SR_UNIT_FAHRENHEIT; else devc->cur_unit[i] = SR_UNIT_CELSIUS; g_free(m2); devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; devc->cur_digits[i] = 1; devc->cur_encoding[i] = 2; } else if (!strcmp(mstr, "SCOU")) { /* * Switch counter, not supported. Not sure what values * come from FETC in this mode, or how they would map * into libsigrok. */ } else if (!strncmp(mstr, "CPER:", 5)) { devc->cur_mq[i] = SR_MQ_CURRENT; devc->cur_unit[i] = SR_UNIT_PERCENTAGE; devc->cur_mqflags[i] = 0; devc->cur_exponent[i] = 0; devc->cur_digits[i] = 2; devc->cur_encoding[i] = 3; } else if (!strcmp(mstr, "SQU")) { /* * Square wave output, not supported. FETC just return * an error in this mode, so don't even call it. */ devc->mode_squarewave = 1; } else if (!strcmp(mstr, "NCV")) { devc->cur_mq[i] = SR_MQ_VOLTAGE; devc->cur_unit[i] = SR_UNIT_VOLT; devc->cur_mqflags[i] = SR_MQFLAG_AC; if (devc->profile->model == KEYSIGHT_U1281 || devc->profile->model == KEYSIGHT_U1282) { devc->cur_exponent[i] = -3; devc->cur_digits[i] = -1; devc->cur_encoding[i] = 0; } else { devc->cur_exponent[i] = 0; devc->cur_digits[i] = 2; devc->cur_encoding[i] = 3; } } else { sr_dbg("Unknown first argument '%s'.", mstr); } g_free(mstr); struct sr_channel *prev_conf = devc->cur_conf; devc->cur_conf = sr_next_enabled_channel(sdi, devc->cur_conf); if (devc->cur_conf->index >= MIN(devc->profile->nb_channels, 2)) devc->cur_conf = sr_next_enabled_channel(sdi, devc->cur_conf); if (devc->cur_conf->index > prev_conf->index) return JOB_AGAIN; else return JOB_CONF; } static int send_log(const struct sr_dev_inst *sdi) { const char *source[] = { "LOG:HAND", "LOG:TRIG", "LOG:AUTO", "LOG:EXPO" }; struct dev_context *devc = sdi->priv; return agdmm_send(sdi, "%s %d", source[devc->data_source - 1], devc->cur_sample); } static int recv_log(const struct sr_dev_inst *sdi, GMatchInfo *match, const int mqs[], const int units[], const int exponents[], unsigned int num_functions) { struct dev_context *devc; struct sr_datafeed_packet packet; struct sr_datafeed_analog analog; struct sr_analog_encoding encoding; struct sr_analog_meaning meaning; struct sr_analog_spec spec; char *mstr; unsigned function; int value, negative, overload, exponent, alternate_unit, mq, unit; int mqflags = 0; float fvalue; sr_spew("LOG response '%s'.", g_match_info_get_string(match)); devc = sdi->priv; mstr = g_match_info_fetch(match, 2); if (sr_atoi(mstr, (int*)&function) != SR_OK || function >= num_functions) { g_free(mstr); sr_dbg("Invalid function."); return SR_ERR; } g_free(mstr); mstr = g_match_info_fetch(match, 3); if (sr_atoi(mstr, &value) != SR_OK) { g_free(mstr); sr_dbg("Invalid value."); return SR_ERR; } g_free(mstr); mstr = g_match_info_fetch(match, 1); negative = mstr[7] & 2 ? -1 : 1; overload = mstr[8] & 4; exponent = (mstr[9] & 0xF) + exponents[function]; alternate_unit = mstr[10] & 1; if (mstr[ 8] & 1) mqflags |= SR_MQFLAG_DC; if (mstr[ 8] & 2) mqflags |= SR_MQFLAG_AC; if (mstr[11] & 4) mqflags |= SR_MQFLAG_RELATIVE; if (mstr[12] & 1) mqflags |= SR_MQFLAG_AVG; if (mstr[12] & 2) mqflags |= SR_MQFLAG_MIN; if (mstr[12] & 4) mqflags |= SR_MQFLAG_MAX; if (function == 5) mqflags |= SR_MQFLAG_DIODE | SR_MQFLAG_DC; g_free(mstr); mq = mqs[function]; unit = units[function]; if (alternate_unit) { if (mq == SR_MQ_RESISTANCE) mq = SR_MQ_CONTINUITY; if (unit == SR_UNIT_DECIBEL_MW) unit = SR_UNIT_DECIBEL_VOLT; if (unit == SR_UNIT_CELSIUS) { unit = SR_UNIT_FAHRENHEIT; if (devc->profile->model == KEYSIGHT_U1281 || devc->profile->model == KEYSIGHT_U1282) exponent--; } } if (overload) fvalue = NAN; else fvalue = negative * value * powf(10, exponent); sr_analog_init(&analog, &encoding, &meaning, &spec, -exponent); analog.meaning->mq = mq; analog.meaning->unit = unit; analog.meaning->mqflags = mqflags; analog.meaning->channels = g_slist_append(NULL, devc->cur_channel); analog.num_samples = 1; analog.data = &fvalue; packet.type = SR_DF_ANALOG; packet.payload = &analog; sr_session_send(sdi, &packet); g_slist_free(analog.meaning->channels); sr_sw_limits_update_samples_read(&devc->limits, 1); devc->cur_sample++; return JOB_LOG; } static int recv_log_u124xc(const struct sr_dev_inst *sdi, GMatchInfo *match) { static const int mqs[] = { SR_MQ_VOLTAGE, SR_MQ_VOLTAGE, SR_MQ_CURRENT, SR_MQ_CURRENT, SR_MQ_RESISTANCE, SR_MQ_VOLTAGE, SR_MQ_TEMPERATURE, SR_MQ_CAPACITANCE, SR_MQ_FREQUENCY, SR_MQ_HARMONIC_RATIO, SR_MQ_CURRENT }; static const int units[] = { SR_UNIT_VOLT, SR_UNIT_VOLT, SR_UNIT_AMPERE, SR_UNIT_AMPERE, SR_UNIT_OHM, SR_UNIT_VOLT, SR_UNIT_CELSIUS, SR_UNIT_FARAD, SR_UNIT_HERTZ, SR_UNIT_PERCENTAGE, SR_UNIT_PERCENTAGE }; static const int exponents[] = { -5, -4, -7, -3, -2, -3, -1, -10, -2, -2, -2 }; return recv_log(sdi, match, mqs, units, exponents, ARRAY_SIZE(mqs)); } static int recv_log_u128x(const struct sr_dev_inst *sdi, GMatchInfo *match) { static const int mqs[] = { SR_MQ_VOLTAGE, SR_MQ_VOLTAGE, SR_MQ_CURRENT, SR_MQ_CURRENT, SR_MQ_RESISTANCE, SR_MQ_VOLTAGE, SR_MQ_TEMPERATURE, SR_MQ_CAPACITANCE, SR_MQ_FREQUENCY, SR_MQ_DUTY_CYCLE, SR_MQ_PULSE_WIDTH, SR_MQ_VOLTAGE, SR_MQ_CURRENT, SR_MQ_CONDUCTANCE }; static const int units[] = { SR_UNIT_VOLT, SR_UNIT_VOLT, SR_UNIT_AMPERE, SR_UNIT_AMPERE, SR_UNIT_OHM, SR_UNIT_VOLT, SR_UNIT_CELSIUS, SR_UNIT_FARAD, SR_UNIT_HERTZ, SR_UNIT_PERCENTAGE, SR_UNIT_SECOND, SR_UNIT_DECIBEL_MW, SR_UNIT_PERCENTAGE, SR_UNIT_SIEMENS }; static const int exponents[] = { -6, -4, -9, -4, -3, -4, -1, -12, -3, -3, -6, -3, -2, -11 }; return recv_log(sdi, match, mqs, units, exponents, ARRAY_SIZE(mqs)); } /* This comes in whenever the rotary switch is changed to a new position. * We could use it to determine the major measurement mode, but we already * have the output of CONF? for that, which is more detailed. However * we do need to catch this here, or it'll show up in some other output. */ static int recv_switch(const struct sr_dev_inst *sdi, GMatchInfo *match) { struct dev_context *devc = sdi->priv; sr_spew("Switch '%s'.", g_match_info_get_string(match)); devc->current_job = 0; devc->job_running = FALSE; memset(devc->jobs_start, 0, sizeof(devc->jobs_start)); devc->cur_mq[0] = -1; if (devc->profile->nb_channels > 2) devc->cur_mq[1] = -1; return SR_OK; } static int recv_err(const struct sr_dev_inst *sdi, GMatchInfo *match) { struct dev_context *devc = sdi->priv; (void) match; if (devc->data_source != DATA_SOURCE_LIVE) return JOB_STOP; /* In log mode, stop acquisition after receiving *E. */ else return JOB_AGAIN; } /* Poll CONF/STAT at 1Hz and values at samplerate. */ SR_PRIV const struct agdmm_job agdmm_jobs_live[] = { { JOB_FETC, SAMPLERATE_INTERVAL, send_fetc }, { JOB_CONF, 1000, send_conf }, { JOB_STAT, 1000, send_stat }, ALL_ZERO }; /* Poll LOG as fast as possible. */ SR_PRIV const struct agdmm_job agdmm_jobs_log[] = { { JOB_LOG, 0, send_log }, ALL_ZERO }; SR_PRIV const struct agdmm_recv agdmm_recvs_u123x[] = { { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u123x }, { "^\\*([0-9])$", recv_switch }, { "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc }, { "^\"(V|MV|A|UA|FREQ),(\\d),(AC|DC)\"$", recv_conf_u123x }, { "^\"(RES|CAP),(\\d)\"$", recv_conf_u123x}, { "^\"(DIOD)\"$", recv_conf_u123x }, ALL_ZERO }; SR_PRIV const struct agdmm_recv agdmm_recvs_u124x[] = { { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u124x }, { "^\\*([0-9])$", recv_switch }, { "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc }, { "^\"(VOLT|CURR|RES|CAP|FREQ) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(VOLT:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(CURR:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(T[0-9]:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x }, { "^\"(DIOD)\"$", recv_conf_u124x_5x }, ALL_ZERO }; SR_PRIV const struct agdmm_recv agdmm_recvs_u124xc[] = { { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u124xc }, { "^\\*([0-9])$", recv_switch }, { "^([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))$", recv_fetc }, { "^\"(VOLT|VOLT:AC|VOLT:HRAT|CURR|CURR:AC|RES|CONT|CAP|FREQ|FREQ:AC) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(TEMP:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x }, { "^\"(NCV) (HI|LO)\"$", recv_conf_u124x_5x }, { "^\"(DIOD|TEMP)\"$", recv_conf_u124x_5x }, { "^\"((\\d{2})(\\d{5})\\d{7})\"$", recv_log_u124xc }, { "^\\*E$", recv_err }, ALL_ZERO }; SR_PRIV const struct agdmm_recv agdmm_recvs_u125x[] = { { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u125x }, { "^\\*([0-9])$", recv_switch }, { "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc }, { "^\"(VOLT|CURR|RES|CAP|FREQ) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(VOLT:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(CURR:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(T[0-9]:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x }, { "^\"(DIOD)\"$", recv_conf_u124x_5x }, ALL_ZERO }; SR_PRIV const struct agdmm_recv agdmm_recvs_u128x[] = { { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u128x }, { "^\\*([0-9])$", recv_switch }, { "^([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))$", recv_fetc }, { "^\"(VOLT|CURR|RES|CONT|COND|CAP|FREQ|FC1|FC100) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(VOLT:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(CURR:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(FREQ:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(PULS:PWID|PULS:PWID:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x }, { "^\"(TEMP:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x }, { "^\"(NCV) (HIGH|LOW)\"$", recv_conf_u124x_5x }, { "^\"(DIOD|SQU|PULS:PDUT|TEMP)\"$", recv_conf_u124x_5x }, { "^\"((\\d{2})(\\d{5})\\d{7})\"$", recv_log_u128x }, { "^\\*E$", recv_err }, ALL_ZERO };