/* * This file is part of the sigrok project. * * Copyright (C) 2010 Uwe Hermann * Copyright (C) 2011 Olivier Fauchon * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #define DEMO_ANALOG #include #include #include #include #include #ifdef _WIN32 #include #include #define pipe(fds) _pipe(fds, 4096, _O_BINARY) #endif #include "config.h" #ifdef DEMO_ANALOG #define NUM_PROBES 9 #else #define NUM_PROBES 8 #endif #define DEMONAME "Demo device" /* size of chunks to send through the session bus */ #ifdef DEMO_ANALOG #define BUFSIZE 32768 #else #define BUFSIZE 4096 #endif enum { GENMODE_DEFAULT, GENMODE_RANDOM, GENMODE_INC, GENMODE_SINE, }; GIOChannel *channels[2]; struct databag { int pipe_fds[2]; uint8_t sample_generator; uint8_t thread_running; uint64_t samples_counter; int device_index; gpointer session_device_id; GTimer *timer; }; static int capabilities[] = { HWCAP_LOGIC_ANALYZER, HWCAP_PATTERN_MODE, HWCAP_LIMIT_SAMPLES, HWCAP_LIMIT_MSEC, HWCAP_CONTINUOUS }; static const char *patternmodes[] = { "random", "incremental", "sine", NULL, }; #ifndef DEMO_ANALOG static uint8_t genmode_default[] = { 0x4c, 0x92, 0x92, 0x92, 0x64, 0x00, 0x00, 0x00, 0x82, 0xfe, 0xfe, 0x82, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x82, 0x82, 0x92, 0x74, 0x00, 0x00, 0x00, 0xfe, 0x12, 0x12, 0x32, 0xcc, 0x00, 0x00, 0x00, 0x7c, 0x82, 0x82, 0x82, 0x7c, 0x00, 0x00, 0x00, 0xfe, 0x10, 0x28, 0x44, 0x82, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xbe, 0xbe, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; #endif /* List of struct sigrok_device_instance, maintained by opendev()/closedev(). */ static GSList *device_instances = NULL; static uint64_t cur_samplerate = KHZ(200); static uint64_t limit_samples = 0; static uint64_t limit_msec = 0; static int default_genmode = GENMODE_DEFAULT; static GThread *my_thread; static int thread_running; static void hw_stop_acquisition(int device_index, gpointer session_device_id); static int hw_init(char *deviceinfo) { struct sigrok_device_instance *sdi; /* Avoid compiler warnings. */ deviceinfo = deviceinfo; sdi = sigrok_device_instance_new(0, ST_ACTIVE, DEMONAME, NULL, NULL); if (!sdi) return 0; device_instances = g_slist_append(device_instances, sdi); return 1; } static int hw_opendev(int device_index) { /* Avoid compiler warnings. */ device_index = device_index; /* Nothing needed so far. */ return SIGROK_OK; } static void hw_closedev(int device_index) { /* Avoid compiler warnings. */ device_index = device_index; /* Nothing needed so far. */ } static void hw_cleanup(void) { /* Nothing needed so far. */ } static void *hw_get_device_info(int device_index, int device_info_id) { struct sigrok_device_instance *sdi; void *info = NULL; if (!(sdi = get_sigrok_device_instance(device_instances, device_index))) return NULL; switch (device_info_id) { case DI_INSTANCE: info = sdi; break; case DI_NUM_PROBES: info = GINT_TO_POINTER(NUM_PROBES); break; case DI_CUR_SAMPLERATE: info = &cur_samplerate; break; case DI_PATTERNMODES: info = &patternmodes; break; #ifdef DEMO_ANALOG case DI_PROBE_TYPE: info = GINT_TO_POINTER(PROBE_TYPE_ANALOG); break; #endif } return info; } static int hw_get_status(int device_index) { /* Avoid compiler warnings. */ device_index = device_index; return ST_ACTIVE; } static int *hw_get_capabilities(void) { return capabilities; } static int hw_set_configuration(int device_index, int capability, void *value) { int ret; uint64_t *tmp_u64; char *stropt; /* Avoid compiler warnings. */ device_index = device_index; if (capability == HWCAP_PROBECONFIG) { /* Nothing to do. */ ret = SIGROK_OK; } else if (capability == HWCAP_LIMIT_SAMPLES) { tmp_u64 = value; limit_samples = *tmp_u64; ret = SIGROK_OK; } else if (capability == HWCAP_LIMIT_MSEC) { tmp_u64 = value; limit_msec = *tmp_u64; ret = SIGROK_OK; } else if (capability == HWCAP_PATTERN_MODE) { stropt = value; if (!strcmp(stropt, "random")) { default_genmode = GENMODE_RANDOM; ret = SIGROK_OK; } else if (!strcmp(stropt, "incremental")) { default_genmode = GENMODE_INC; ret = SIGROK_OK; } else if (!strcmp(stropt, "sine")) { default_genmode = GENMODE_SINE; ret = SIGROK_OK; } else { ret = SIGROK_ERR; } } else { ret = SIGROK_ERR; } return ret; } static void samples_generator(uint8_t *buf, uint64_t size, void *data) { struct databag *mydata = data; uint64_t p, i; #ifdef DEMO_ANALOG /* * We will simulate a device with 8 logic probes and 1 analog probe. * This fictional device sends the data packed: 8 bits for 8 logic * probes and 16 bits for the analog probe, in this order. * Total of 24 bits. * I could just generate a properly formatted DF_ANALOG packet here, * but I will leave the formatting to receive_data() to make its code * more like a real hardware driver. */ memset(buf, 0, size * 3); switch (mydata->sample_generator) { default: case GENMODE_DEFAULT: case GENMODE_SINE: for (i = 0; i < size * 3; i += 3) { *(buf + i) = i / 3; *(uint16_t *) (buf + i + 1) = (uint16_t) (sin(i / 3) * 256 * 30); } break; case GENMODE_RANDOM: for (i = 0; i < size * 3; i += 3) { *(buf + i) = (uint8_t)(rand() & 0xff); *(uint16_t *) (buf + i + 1) = (uint16_t)(rand() & 0xffff); } break; case GENMODE_INC: for (i = 0; i < size * 3; i += 3) { *(buf + i) = i / 3; *(uint16_t *)(buf + i + 1) = i / 3 * 256 * 10; } break; } #else memset(buf, 0, size); switch (mydata->sample_generator) { case GENMODE_DEFAULT: p = 0; for (i = 0; i < size; i++) { *(buf + i) = ~(genmode_default[p] >> 1); if (++p == 64) p = 0; } break; case GENMODE_RANDOM: /* Random */ for (i = 0; i < size; i++) *(buf + i) = (uint8_t)(rand() & 0xff); break; case GENMODE_INC: /* Simple increment */ for (i = 0; i < size; i++) *(buf + i) = i; break; } #endif } /* Thread function */ static void thread_func(void *data) { struct databag *mydata = data; uint8_t buf[BUFSIZE]; uint64_t nb_to_send = 0; int bytes_written; double time_cur, time_last, time_diff; time_last = g_timer_elapsed(mydata->timer, NULL); while (thread_running) { /* Rate control */ time_cur = g_timer_elapsed(mydata->timer, NULL); time_diff = time_cur - time_last; time_last = time_cur; nb_to_send = cur_samplerate * time_diff; if (limit_samples) nb_to_send = MIN(nb_to_send, limit_samples - mydata->samples_counter); /* Make sure we don't overflow. */ #ifdef DEMO_ANALOG nb_to_send = MIN(nb_to_send, BUFSIZE / 3); #else nb_to_send = MIN(nb_to_send, BUFSIZE); #endif if (nb_to_send) { samples_generator(buf, nb_to_send, data); mydata->samples_counter += nb_to_send; #ifdef DEMO_ANALOG g_io_channel_write_chars(channels[1], (gchar *) &buf, nb_to_send * 3, (gsize *) &bytes_written, NULL); #else g_io_channel_write_chars(channels[1], (gchar *) &buf, nb_to_send, (gsize *) &bytes_written, NULL); #endif } /* Check if we're done. */ if ((limit_msec && time_cur * 1000 > limit_msec) || (limit_samples && mydata->samples_counter >= limit_samples)) { close(mydata->pipe_fds[1]); thread_running = 0; } g_usleep(10); } } /* Callback handling data */ static int receive_data(int fd, int revents, void *user_data) { struct datafeed_packet packet; char c[BUFSIZE]; uint64_t z; #ifdef DEMO_ANALOG struct analog_sample *sample; unsigned int i, x; int sample_size = sizeof(struct analog_sample) + (NUM_PROBES * sizeof(struct analog_probe)); char *buf; #endif /* Avoid compiler warnings. */ fd = fd; revents = revents; do { g_io_channel_read_chars(channels[0], (gchar *) &c, BUFSIZE, (gsize *) &z, NULL); if (z > 0) { #ifdef DEMO_ANALOG packet.type = DF_ANALOG; packet.length = (z / 3) * sample_size; packet.unitsize = sample_size; buf = malloc(sample_size * packet.length); if (!buf) return FALSE; /* Craft our packet. */ for (i = 0; i < z / 3; i++) { sample = (struct analog_sample *) (buf + (i * sample_size)); sample->num_probes = NUM_PROBES; /* 8 Logic probes */ for (x = 0; x < NUM_PROBES - 1; x++) { sample->probes[x].val = (c[i * 3] >> x) & 1; sample->probes[x].res = 1; } /* 1 Analog probe, 16 bit adc */ for (; x < NUM_PROBES; x++) { sample->probes[x].val = *(uint16_t *) (c + i * 3 + 1); sample->probes[x].val &= ((1 << 16) - 1); sample->probes[x].res = 16; } } packet.payload = buf; session_bus(user_data, &packet); free(buf); #else packet.type = DF_LOGIC; packet.length = z; packet.unitsize = 1; packet.payload = c; session_bus(user_data, &packet); #endif } } while (z > 0); if (!thread_running && z <= 0) { /* Make sure we don't receive more packets */ g_io_channel_close(channels[0]); /* Send last packet. */ packet.type = DF_END; session_bus(user_data, &packet); return FALSE; } return TRUE; } static int hw_start_acquisition(int device_index, gpointer session_device_id) { struct datafeed_packet *packet; struct datafeed_header *header; struct databag *mydata; mydata = malloc(sizeof(struct databag)); if (!mydata) return SIGROK_ERR_MALLOC; mydata->sample_generator = default_genmode; mydata->session_device_id = session_device_id; mydata->device_index = device_index; mydata->samples_counter = 0; if (pipe(mydata->pipe_fds)) return SIGROK_ERR; channels[0] = g_io_channel_unix_new(mydata->pipe_fds[0]); channels[1] = g_io_channel_unix_new(mydata->pipe_fds[1]); /* Set channel encoding to binary (default is UTF-8). */ g_io_channel_set_encoding(channels[0], NULL, NULL); g_io_channel_set_encoding(channels[1], NULL, NULL); /* Make channels to unbuffered. */ g_io_channel_set_buffered(channels[0], FALSE); g_io_channel_set_buffered(channels[1], FALSE); source_add(mydata->pipe_fds[0], G_IO_IN | G_IO_ERR, 40, receive_data, session_device_id); /* Run the demo thread. */ g_thread_init(NULL); mydata->timer = g_timer_new(); thread_running = 1; my_thread = g_thread_create((GThreadFunc)thread_func, mydata, TRUE, NULL); if (!my_thread) return SIGROK_ERR; packet = malloc(sizeof(struct datafeed_packet)); header = malloc(sizeof(struct datafeed_header)); if (!packet || !header) return SIGROK_ERR_MALLOC; packet->type = DF_HEADER; packet->length = sizeof(struct datafeed_header); packet->payload = (unsigned char *)header; #ifdef DEMO_ANALOG packet->unitsize = sizeof(struct analog_sample) + (NUM_PROBES * sizeof(struct analog_probe)); #endif header->feed_version = 1; gettimeofday(&header->starttime, NULL); header->samplerate = cur_samplerate; header->protocol_id = PROTO_RAW; header->num_logic_probes = NUM_PROBES; header->num_analog_probes = 0; session_bus(session_device_id, packet); free(header); free(packet); return SIGROK_OK; } static void hw_stop_acquisition(int device_index, gpointer session_device_id) { /* Avoid compiler warnings. */ device_index = device_index; session_device_id = session_device_id; /* Stop generate thread. */ thread_running = 0; } struct device_plugin demo_plugin_info = { "demo", 1, hw_init, hw_cleanup, hw_opendev, hw_closedev, hw_get_device_info, hw_get_status, hw_get_capabilities, hw_set_configuration, hw_start_acquisition, hw_stop_acquisition, };