/* * This file is part of the sigrok project. * * Copyright (C) 2012 Alexandru Gagniuc * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* * RadioShack 22-812 protocol parser. * * This protocol is currently encountered on the RadioShack 22-812 DMM. * It is a 9-byte packet representing a 1:1 mapping of the LCD segments, hence * the name rs9lcd. * * The chip is a bare die covered by a plastic blob. It is unclear if this chip * and protocol is used on any other device. */ #include #include #include #include #include "libsigrok.h" #include "libsigrok-internal.h" /* Message logging helpers with driver-specific prefix string. */ #define DRIVER_LOG_DOMAIN "rs9lcd: " #define sr_log(l, s, args...) sr_log(l, DRIVER_LOG_DOMAIN s, ## args) #define sr_spew(s, args...) sr_spew(DRIVER_LOG_DOMAIN s, ## args) #define sr_dbg(s, args...) sr_dbg(DRIVER_LOG_DOMAIN s, ## args) #define sr_info(s, args...) sr_info(DRIVER_LOG_DOMAIN s, ## args) #define sr_warn(s, args...) sr_warn(DRIVER_LOG_DOMAIN s, ## args) #define sr_err(s, args...) sr_err(DRIVER_LOG_DOMAIN s, ## args) /* Byte 1 of the packet, and the modes it represents */ #define IND1_HZ (1 << 7) #define IND1_OHM (1 << 6) #define IND1_KILO (1 << 5) #define IND1_MEGA (1 << 4) #define IND1_FARAD (1 << 3) #define IND1_AMP (1 << 2) #define IND1_VOLT (1 << 1) #define IND1_MILI (1 << 0) /* Byte 2 of the packet, and the modes it represents */ #define IND2_MICRO (1 << 7) #define IND2_NANO (1 << 6) #define IND2_DBM (1 << 5) #define IND2_SEC (1 << 4) #define IND2_DUTY (1 << 3) #define IND2_HFE (1 << 2) #define IND2_REL (1 << 1) #define IND2_MIN (1 << 0) /* Byte 7 of the packet, and the modes it represents */ #define INFO_BEEP (1 << 7) #define INFO_DIODE (1 << 6) #define INFO_BAT (1 << 5) #define INFO_HOLD (1 << 4) #define INFO_NEG (1 << 3) #define INFO_AC (1 << 2) #define INFO_RS232 (1 << 1) #define INFO_AUTO (1 << 0) /* Instead of a decimal point, digit 4 carries the MAX flag */ #define DIG4_MAX (1 << 3) /* Mask to remove the decimal point from a digit */ #define DP_MASK (1 << 3) /* What the LCD values represent */ #define LCD_0 0xd7 #define LCD_1 0x50 #define LCD_2 0xb5 #define LCD_3 0xf1 #define LCD_4 0x72 #define LCD_5 0xe3 #define LCD_6 0xe7 #define LCD_7 0x51 #define LCD_8 0xf7 #define LCD_9 0xf3 #define LCD_C 0x87 #define LCD_E #define LCD_F #define LCD_h 0x66 #define LCD_H 0x76 #define LCD_I #define LCD_n #define LCD_P 0x37 #define LCD_r enum { MODE_DC_V = 0, MODE_AC_V = 1, MODE_DC_UA = 2, MODE_DC_MA = 3, MODE_DC_A = 4, MODE_AC_UA = 5, MODE_AC_MA = 6, MODE_AC_A = 7, MODE_OHM = 8, MODE_FARAD = 9, MODE_HZ = 10, MODE_VOLT_HZ = 11, /* Dial set to V, Hz selected by Hz button */ MODE_AMP_HZ = 12, /* Dial set to A, Hz selected by Hz button */ MODE_DUTY = 13, MODE_VOLT_DUTY = 14, /* Dial set to V, duty cycle selected */ MODE_AMP_DUTY = 15, /* Dial set to A, duty cycle selected */ MODE_WIDTH = 16, MODE_VOLT_WIDTH = 17, /* Dial set to V, pulse width selected */ MODE_AMP_WIDTH = 18, /* Dial set to A, pulse width selected */ MODE_DIODE = 19, MODE_CONT = 20, MODE_HFE = 21, MODE_LOGIC = 22, MODE_DBM = 23, /* MODE_EF = 24, */ /* Not encountered on any DMM */ MODE_TEMP = 25, MODE_INVALID = 26, }; enum { READ_ALL, READ_TEMP, }; struct rs9lcd_packet { uint8_t mode; uint8_t indicatrix1; uint8_t indicatrix2; uint8_t digit4; uint8_t digit3; uint8_t digit2; uint8_t digit1; uint8_t info; uint8_t checksum; }; static gboolean checksum_valid(const struct rs9lcd_packet *rs_packet) { uint8_t *raw; uint8_t sum = 0; int i; raw = (void *)rs_packet; for (i = 0; i < RS9LCD_PACKET_SIZE - 1; i++) sum += raw[i]; /* This is just a funky constant added to the checksum. */ sum += 57; sum -= rs_packet->checksum; return (sum == 0); } static gboolean selection_good(const struct rs9lcd_packet *rs_packet) { int count; /* Does the packet have more than one multiplier? */ count = 0; count += (rs_packet->indicatrix1 & IND1_KILO) ? 1 : 0; count += (rs_packet->indicatrix1 & IND1_MEGA) ? 1 : 0; count += (rs_packet->indicatrix1 & IND1_MILI) ? 1 : 0; count += (rs_packet->indicatrix2 & IND2_MICRO) ? 1 : 0; count += (rs_packet->indicatrix2 & IND2_NANO) ? 1 : 0; if (count > 1) { sr_err("More than one multiplier detected in packet."); return FALSE; } /* Does the packet "measure" more than one type of value? */ count = 0; count += (rs_packet->indicatrix1 & IND1_HZ) ? 1 : 0; count += (rs_packet->indicatrix1 & IND1_OHM) ? 1 : 0; count += (rs_packet->indicatrix1 & IND1_FARAD) ? 1 : 0; count += (rs_packet->indicatrix1 & IND1_AMP) ? 1 : 0; count += (rs_packet->indicatrix1 & IND1_VOLT) ? 1 : 0; count += (rs_packet->indicatrix2 & IND2_DBM) ? 1 : 0; count += (rs_packet->indicatrix2 & IND2_SEC) ? 1 : 0; count += (rs_packet->indicatrix2 & IND2_DUTY) ? 1 : 0; count += (rs_packet->indicatrix2 & IND2_HFE) ? 1 : 0; if (count > 1) { sr_err("More than one measurement type detected in packet."); return FALSE; } return TRUE; } /* * Since the 22-812 does not identify itself in any way, shape, or form, * we really don't know for sure who is sending the data. We must use every * possible check to filter out bad packets, especially since detection of the * 22-812 depends on how well we can filter the packets. */ SR_PRIV gboolean sr_rs9lcd_packet_valid(const uint8_t *buf) { const struct rs9lcd_packet *rs_packet = (void *)buf; /* * Check for valid mode first, before calculating the checksum. No * point calculating the checksum, if we know we'll reject the packet. */ if (!(rs_packet->mode < MODE_INVALID)) return FALSE; if (!checksum_valid(rs_packet)) { sr_spew("Packet with invalid checksum. Discarding."); return FALSE; } if (!selection_good(rs_packet)) { sr_spew("Packet with invalid selection bits. Discarding."); return FALSE; } return TRUE; } static uint8_t decode_digit(uint8_t raw_digit) { /* Take out the decimal point, so we can use a simple switch(). */ raw_digit &= ~DP_MASK; switch (raw_digit) { case 0x00: case LCD_0: return 0; case LCD_1: return 1; case LCD_2: return 2; case LCD_3: return 3; case LCD_4: return 4; case LCD_5: return 5; case LCD_6: return 6; case LCD_7: return 7; case LCD_8: return 8; case LCD_9: return 9; default: sr_err("Invalid digit byte: 0x%02x.", raw_digit); return 0xff; } } static double lcd_to_double(const struct rs9lcd_packet *rs_packet, int type) { double rawval = 0, multiplier = 1; uint8_t digit, raw_digit; gboolean dp_reached = FALSE; int i, end; /* end = 1: Don't parse last digit. end = 0: Parse all digits. */ end = (type == READ_TEMP) ? 1 : 0; /* We have 4 digits, and we start from the most significant. */ for (i = 3; i >= end; i--) { raw_digit = *(&(rs_packet->digit4) + i); digit = decode_digit(raw_digit); if (digit == 0xff) { rawval = NAN; break; } /* * Digit 1 does not have a decimal point. Instead, the decimal * point is used to indicate MAX, so we must avoid testing it. */ if ((i < 3) && (raw_digit & DP_MASK)) dp_reached = TRUE; if (dp_reached) multiplier /= 10; rawval = rawval * 10 + digit; } rawval *= multiplier; if (rs_packet->info & INFO_NEG) rawval *= -1; /* See if we need to multiply our raw value by anything. */ if (rs_packet->indicatrix1 & IND2_NANO) rawval *= 1E-9; else if (rs_packet->indicatrix2 & IND2_MICRO) rawval *= 1E-6; else if (rs_packet->indicatrix1 & IND1_MILI) rawval *= 1E-3; else if (rs_packet->indicatrix1 & IND1_KILO) rawval *= 1E3; else if (rs_packet->indicatrix1 & IND1_MEGA) rawval *= 1E6; return rawval; } static gboolean is_celsius(const struct rs9lcd_packet *rs_packet) { return ((rs_packet->digit4 & ~DP_MASK) == LCD_C); } static gboolean is_shortcirc(const struct rs9lcd_packet *rs_packet) { return ((rs_packet->digit2 & ~DP_MASK) == LCD_h); } static gboolean is_logic_high(const struct rs9lcd_packet *rs_packet) { sr_spew("Digit 2: 0x%02x.", rs_packet->digit2 & ~DP_MASK); return ((rs_packet->digit2 & ~DP_MASK) == LCD_H); } SR_PRIV int sr_rs9lcd_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info) { const struct rs9lcd_packet *rs_packet = (void *)buf; double rawval; (void)info; rawval = lcd_to_double(rs_packet, READ_ALL); switch (rs_packet->mode) { case MODE_DC_V: analog->mq = SR_MQ_VOLTAGE; analog->unit = SR_UNIT_VOLT; analog->mqflags |= SR_MQFLAG_DC; break; case MODE_AC_V: analog->mq = SR_MQ_VOLTAGE; analog->unit = SR_UNIT_VOLT; analog->mqflags |= SR_MQFLAG_AC; break; case MODE_DC_UA: /* Fall through */ case MODE_DC_MA: /* Fall through */ case MODE_DC_A: analog->mq = SR_MQ_CURRENT; analog->unit = SR_UNIT_AMPERE; analog->mqflags |= SR_MQFLAG_DC; break; case MODE_AC_UA: /* Fall through */ case MODE_AC_MA: /* Fall through */ case MODE_AC_A: analog->mq = SR_MQ_CURRENT; analog->unit = SR_UNIT_AMPERE; analog->mqflags |= SR_MQFLAG_AC; break; case MODE_OHM: analog->mq = SR_MQ_RESISTANCE; analog->unit = SR_UNIT_OHM; break; case MODE_FARAD: analog->mq = SR_MQ_CAPACITANCE; analog->unit = SR_UNIT_FARAD; break; case MODE_CONT: analog->mq = SR_MQ_CONTINUITY; analog->unit = SR_UNIT_BOOLEAN; rawval = is_shortcirc(rs_packet); break; case MODE_DIODE: analog->mq = SR_MQ_VOLTAGE; analog->unit = SR_UNIT_VOLT; analog->mqflags |= SR_MQFLAG_DIODE | SR_MQFLAG_DC; break; case MODE_HZ: /* Fall through */ case MODE_VOLT_HZ: /* Fall through */ case MODE_AMP_HZ: analog->mq = SR_MQ_FREQUENCY; analog->unit = SR_UNIT_HERTZ; break; case MODE_LOGIC: /* * No matter whether or not we have an actual voltage reading, * we are measuring voltage, so we set our MQ as VOLTAGE. */ analog->mq = SR_MQ_VOLTAGE; if (!isnan(rawval)) { /* We have an actual voltage. */ analog->unit = SR_UNIT_VOLT; } else { /* We have either HI or LOW. */ analog->unit = SR_UNIT_BOOLEAN; rawval = is_logic_high(rs_packet); } break; case MODE_HFE: analog->mq = SR_MQ_GAIN; analog->unit = SR_UNIT_UNITLESS; break; case MODE_DUTY: /* Fall through */ case MODE_VOLT_DUTY: /* Fall through */ case MODE_AMP_DUTY: analog->mq = SR_MQ_DUTY_CYCLE; analog->unit = SR_UNIT_PERCENTAGE; break; case MODE_WIDTH: /* Fall through */ case MODE_VOLT_WIDTH: /* Fall through */ case MODE_AMP_WIDTH: analog->mq = SR_MQ_PULSE_WIDTH; analog->unit = SR_UNIT_SECOND; break; case MODE_TEMP: analog->mq = SR_MQ_TEMPERATURE; /* We need to reparse. */ rawval = lcd_to_double(rs_packet, READ_TEMP); analog->unit = is_celsius(rs_packet) ? SR_UNIT_CELSIUS : SR_UNIT_FAHRENHEIT; break; case MODE_DBM: analog->mq = SR_MQ_POWER; analog->unit = SR_UNIT_DECIBEL_MW; analog->mqflags |= SR_MQFLAG_AC; break; default: sr_err("Unknown mode: %d.", rs_packet->mode); break; } if (rs_packet->info & INFO_HOLD) analog->mqflags |= SR_MQFLAG_HOLD; if (rs_packet->digit4 & DIG4_MAX) analog->mqflags |= SR_MQFLAG_MAX; if (rs_packet->indicatrix2 & IND2_MIN) analog->mqflags |= SR_MQFLAG_MIN; if (rs_packet->info & INFO_AUTO) analog->mqflags |= SR_MQFLAG_AUTORANGE; *floatval = rawval; return SR_OK; }