/* * This file is part of the libsigrok project. * * Copyright (C) 2013 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef LIBSIGROK_LIBSIGROK_INTERNAL_H #define LIBSIGROK_LIBSIGROK_INTERNAL_H #include "config.h" #include #ifdef HAVE_LIBHIDAPI #include #endif #ifdef HAVE_LIBSERIALPORT #include #endif #ifdef HAVE_LIBUSB_1_0 #include #endif #include #include #include #include struct zip; struct zip_stat; /** * @file * * libsigrok private header file, only to be used internally. */ /*--- Macros ----------------------------------------------------------------*/ #ifndef ARRAY_SIZE #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) #endif #ifndef ARRAY_AND_SIZE #define ARRAY_AND_SIZE(a) (a), ARRAY_SIZE(a) #endif #ifndef G_SOURCE_FUNC #define G_SOURCE_FUNC(f) ((GSourceFunc) (void (*)(void)) (f)) /* Since 2.58. */ #endif #define SR_RECEIVE_DATA_CALLBACK(f) \ ((sr_receive_data_callback) (void (*)(void)) (f)) /** * Read a 8 bits unsigned integer out of memory. * @param x a pointer to the input memory * @return the corresponding unsigned integer */ static inline uint8_t read_u8(const uint8_t *p) { return p[0]; } #define R8(x) read_u8((const uint8_t *)(x)) /** * Read a 16 bits big endian unsigned integer out of memory. * @param x a pointer to the input memory * @return the corresponding unsigned integer */ static inline uint16_t read_u16be(const uint8_t *p) { uint16_t u; u = 0; u <<= 8; u |= p[0]; u <<= 8; u |= p[1]; return u; } #define RB16(x) read_u16be((const uint8_t *)(x)) /** * Read a 16 bits little endian unsigned integer out of memory. * @param x a pointer to the input memory * @return the corresponding unsigned integer */ static inline uint16_t read_u16le(const uint8_t *p) { uint16_t u; u = 0; u <<= 8; u |= p[1]; u <<= 8; u |= p[0]; return u; } #define RL16(x) read_u16le((const uint8_t *)(x)) /** * Read a 16 bits big endian signed integer out of memory. * @param x a pointer to the input memory * @return the corresponding signed integer */ static inline int16_t read_i16be(const uint8_t *p) { uint16_t u; int16_t i; u = read_u16be(p); i = (int16_t)u; return i; } #define RB16S(x) read_i16be((const uint8_t *)(x)) /** * Read a 16 bits little endian signed integer out of memory. * @param x a pointer to the input memory * @return the corresponding signed integer */ static inline int16_t read_i16le(const uint8_t *p) { uint16_t u; int16_t i; u = read_u16le(p); i = (int16_t)u; return i; } #define RL16S(x) read_i16le((const uint8_t *)(x)) /** * Read a 24 bits little endian unsigned integer out of memory. * @param x a pointer to the input memory * @return the corresponding unsigned integer */ static inline uint32_t read_u24le(const uint8_t *p) { uint32_t u; u = 0; u <<= 8; u |= p[2]; u <<= 8; u |= p[1]; u <<= 8; u |= p[0]; return u; } /** * Read a 32 bits big endian unsigned integer out of memory. * @param x a pointer to the input memory * @return the corresponding unsigned integer */ static inline uint32_t read_u32be(const uint8_t *p) { uint32_t u; u = 0; u <<= 8; u |= p[0]; u <<= 8; u |= p[1]; u <<= 8; u |= p[2]; u <<= 8; u |= p[3]; return u; } #define RB32(x) read_u32be((const uint8_t *)(x)) /** * Read a 32 bits little endian unsigned integer out of memory. * @param x a pointer to the input memory * @return the corresponding unsigned integer */ static inline uint32_t read_u32le(const uint8_t *p) { uint32_t u; u = 0; u <<= 8; u |= p[3]; u <<= 8; u |= p[2]; u <<= 8; u |= p[1]; u <<= 8; u |= p[0]; return u; } #define RL32(x) read_u32le((const uint8_t *)(x)) /** * Read a 32 bits big endian signed integer out of memory. * @param x a pointer to the input memory * @return the corresponding signed integer */ static inline int32_t read_i32be(const uint8_t *p) { uint32_t u; int32_t i; u = read_u32be(p); i = (int32_t)u; return i; } #define RB32S(x) read_i32be((const uint8_t *)(x)) /** * Read a 32 bits little endian signed integer out of memory. * @param x a pointer to the input memory * @return the corresponding signed integer */ static inline int32_t read_i32le(const uint8_t *p) { uint32_t u; int32_t i; u = read_u32le(p); i = (int32_t)u; return i; } #define RL32S(x) read_i32le((const uint8_t *)(x)) /** * Read a 64 bits big endian unsigned integer out of memory. * @param x a pointer to the input memory * @return the corresponding unsigned integer */ static inline uint64_t read_u64be(const uint8_t *p) { uint64_t u; u = 0; u <<= 8; u |= p[0]; u <<= 8; u |= p[1]; u <<= 8; u |= p[2]; u <<= 8; u |= p[3]; u <<= 8; u |= p[4]; u <<= 8; u |= p[5]; u <<= 8; u |= p[6]; u <<= 8; u |= p[7]; return u; } #define RB64(x) read_u64be((const uint8_t *)(x)) /** * Read a 64 bits little endian unsigned integer out of memory. * @param x a pointer to the input memory * @return the corresponding unsigned integer */ static inline uint64_t read_u64le(const uint8_t *p) { uint64_t u; u = 0; u <<= 8; u |= p[7]; u <<= 8; u |= p[6]; u <<= 8; u |= p[5]; u <<= 8; u |= p[4]; u <<= 8; u |= p[3]; u <<= 8; u |= p[2]; u <<= 8; u |= p[1]; u <<= 8; u |= p[0]; return u; } #define RL64(x) read_u64le((const uint8_t *)(x)) /** * Read a 64 bits big endian signed integer out of memory. * @param x a pointer to the input memory * @return the corresponding unsigned integer */ static inline int64_t read_i64be(const uint8_t *p) { uint64_t u; int64_t i; u = read_u64be(p); i = (int64_t)u; return i; } #define RB64S(x) read_i64be((const uint8_t *)(x)) /** * Read a 64 bits little endian signed integer out of memory. * @param x a pointer to the input memory * @return the corresponding unsigned integer */ static inline int64_t read_i64le(const uint8_t *p) { uint64_t u; int64_t i; u = read_u64le(p); i = (int64_t)u; return i; } #define RL64S(x) read_i64le((const uint8_t *)(x)) /** * Read a 32 bits big endian float out of memory. * @param x a pointer to the input memory * @return the corresponding float */ static inline float read_fltbe(const uint8_t *p) { /* * Implementor's note: Strictly speaking the "union" trick * is not portable. But this phrase was found to work on the * project's supported platforms, and serve well until a more * appropriate phrase is found. */ union { uint32_t u32; float flt; } u; float f; u.u32 = read_u32be(p); f = u.flt; return f; } #define RBFL(x) read_fltbe((const uint8_t *)(x)) /** * Read a 32 bits little endian float out of memory. * @param x a pointer to the input memory * @return the corresponding float */ static inline float read_fltle(const uint8_t *p) { /* * Implementor's note: Strictly speaking the "union" trick * is not portable. But this phrase was found to work on the * project's supported platforms, and serve well until a more * appropriate phrase is found. */ union { uint32_t u32; float flt; } u; float f; u.u32 = read_u32le(p); f = u.flt; return f; } #define RLFL(x) read_fltle((const uint8_t *)(x)) /** * Write a 8 bits unsigned integer to memory. * @param p a pointer to the output memory * @param x the input unsigned integer */ static inline void write_u8(uint8_t *p, uint8_t x) { p[0] = x; } #define W8(p, x) write_u8((uint8_t *)(p), (uint8_t)(x)) /** * Write a 16 bits unsigned integer to memory stored as big endian. * @param p a pointer to the output memory * @param x the input unsigned integer */ static inline void write_u16be(uint8_t *p, uint16_t x) { p[1] = x & 0xff; x >>= 8; p[0] = x & 0xff; x >>= 8; } #define WB16(p, x) write_u16be((uint8_t *)(p), (uint16_t)(x)) /** * Write a 16 bits unsigned integer to memory stored as little endian. * @param p a pointer to the output memory * @param x the input unsigned integer */ static inline void write_u16le(uint8_t *p, uint16_t x) { p[0] = x & 0xff; x >>= 8; p[1] = x & 0xff; x >>= 8; } #define WL16(p, x) write_u16le((uint8_t *)(p), (uint16_t)(x)) /** * Write a 32 bits unsigned integer to memory stored as big endian. * @param p a pointer to the output memory * @param x the input unsigned integer */ static inline void write_u32be(uint8_t *p, uint32_t x) { p[3] = x & 0xff; x >>= 8; p[2] = x & 0xff; x >>= 8; p[1] = x & 0xff; x >>= 8; p[0] = x & 0xff; x >>= 8; } #define WB32(p, x) write_u32be((uint8_t *)(p), (uint32_t)(x)) /** * Write a 32 bits unsigned integer to memory stored as little endian. * @param p a pointer to the output memory * @param x the input unsigned integer */ static inline void write_u32le(uint8_t *p, uint32_t x) { p[0] = x & 0xff; x >>= 8; p[1] = x & 0xff; x >>= 8; p[2] = x & 0xff; x >>= 8; p[3] = x & 0xff; x >>= 8; } #define WL32(p, x) write_u32le((uint8_t *)(p), (uint32_t)(x)) /** * Write a 32 bits float to memory stored as big endian. * @param p a pointer to the output memory * @param x the input float */ static inline void write_fltbe(uint8_t *p, float x) { union { uint32_t u; float f; } u; u.f = x; write_u32be(p, u.u); } #define WBFL(p, x) write_fltbe((uint8_t *)(p), (x)) /** * Write a 32 bits float to memory stored as little endian. * @param p a pointer to the output memory * @param x the input float */ static inline void write_fltle(uint8_t *p, float x) { union { uint32_t u; float f; } u; u.f = x; write_u32le(p, u.u); } #define WLFL(p, x) write_fltle((uint8_t *)(p), float (x)) /* Endianess conversion helpers with read/write position increment. */ /** * Read unsigned 8bit integer from raw memory, increment read position. * @param[in, out] p Pointer into byte stream. * @return Retrieved integer value, unsigned. */ static inline uint8_t read_u8_inc(const uint8_t **p) { uint8_t v; if (!p || !*p) return 0; v = read_u8(*p); *p += sizeof(v); return v; } /** * Read unsigned 16bit integer from raw memory (big endian format), increment read position. * @param[in, out] p Pointer into byte stream. * @return Retrieved integer value, unsigned. */ static inline uint16_t read_u16be_inc(const uint8_t **p) { uint16_t v; if (!p || !*p) return 0; v = read_u16be(*p); *p += sizeof(v); return v; } /** * Read unsigned 16bit integer from raw memory (little endian format), increment read position. * @param[in, out] p Pointer into byte stream. * @return Retrieved integer value, unsigned. */ static inline uint16_t read_u16le_inc(const uint8_t **p) { uint16_t v; if (!p || !*p) return 0; v = read_u16le(*p); *p += sizeof(v); return v; } /** * Read unsigned 32bit integer from raw memory (big endian format), increment read position. * @param[in, out] p Pointer into byte stream. * @return Retrieved integer value, unsigned. */ static inline uint32_t read_u32be_inc(const uint8_t **p) { uint32_t v; if (!p || !*p) return 0; v = read_u32be(*p); *p += sizeof(v); return v; } /** * Read unsigned 24bit integer from raw memory (little endian format), increment read position. * @param[in, out] p Pointer into byte stream. * @return Retrieved integer value, unsigned. */ static inline uint32_t read_u24le_inc(const uint8_t **p) { uint32_t v; if (!p || !*p) return 0; v = read_u24le(*p); *p += 3 * sizeof(uint8_t); return v; } /** * Read unsigned 32bit integer from raw memory (little endian format), increment read position. * @param[in, out] p Pointer into byte stream. * @return Retrieved integer value, unsigned. */ static inline uint32_t read_u32le_inc(const uint8_t **p) { uint32_t v; if (!p || !*p) return 0; v = read_u32le(*p); *p += sizeof(v); return v; } /** * Read unsigned 64bit integer from raw memory (big endian format), increment read position. * @param[in, out] p Pointer into byte stream. * @return Retrieved integer value, unsigned. */ static inline uint64_t read_u64be_inc(const uint8_t **p) { uint64_t v; if (!p || !*p) return 0; v = read_u64be(*p); *p += sizeof(v); return v; } /** * Read unsigned 64bit integer from raw memory (little endian format), increment read position. * @param[in, out] p Pointer into byte stream. * @return Retrieved integer value, unsigned. */ static inline uint64_t read_u64le_inc(const uint8_t **p) { uint64_t v; if (!p || !*p) return 0; v = read_u64le(*p); *p += sizeof(v); return v; } /** * Write unsigned 8bit integer to raw memory, increment write position. * @param[in, out] p Pointer into byte stream. * @param[in] x Value to write. */ static inline void write_u8_inc(uint8_t **p, uint8_t x) { if (!p || !*p) return; write_u8(*p, x); *p += sizeof(x); } /** * Write unsigned 16bit big endian integer to raw memory, increment write position. * @param[in, out] p Pointer into byte stream. * @param[in] x Value to write. */ static inline void write_u16be_inc(uint8_t **p, uint16_t x) { if (!p || !*p) return; write_u16be(*p, x); *p += sizeof(x); } /** * Write unsigned 16bit little endian integer to raw memory, increment write position. * @param[in, out] p Pointer into byte stream. * @param[in] x Value to write. */ static inline void write_u16le_inc(uint8_t **p, uint16_t x) { if (!p || !*p) return; write_u16le(*p, x); *p += sizeof(x); } /** * Write unsigned 32bit big endian integer to raw memory, increment write position. * @param[in, out] p Pointer into byte stream. * @param[in] x Value to write. */ static inline void write_u32be_inc(uint8_t **p, uint32_t x) { if (!p || !*p) return; write_u32be(*p, x); *p += sizeof(x); } /** * Write unsigned 32bit little endian integer to raw memory, increment write position. * @param[in, out] p Pointer into byte stream. * @param[in] x Value to write. */ static inline void write_u32le_inc(uint8_t **p, uint32_t x) { if (!p || !*p) return; write_u32le(*p, x); *p += sizeof(x); } /* Portability fixes for FreeBSD. */ #ifdef __FreeBSD__ #define LIBUSB_CLASS_APPLICATION 0xfe #define libusb_has_capability(x) 0 #define libusb_handle_events_timeout_completed(ctx, tv, c) \ libusb_handle_events_timeout(ctx, tv) #endif /* Static definitions of structs ending with an all-zero entry are a * problem when compiling with -Wmissing-field-initializers: GCC * suppresses the warning only with { 0 }, clang wants { } */ #ifdef __clang__ #define ALL_ZERO { } #else #define ALL_ZERO { 0 } #endif #ifdef __APPLE__ #define SR_DRIVER_LIST_SECTION "__DATA,__sr_driver_list" #else #define SR_DRIVER_LIST_SECTION "__sr_driver_list" #endif /** * Register a list of hardware drivers. * * This macro can be used to register multiple hardware drivers to the library. * This is useful when a driver supports multiple similar but slightly * different devices that require different sr_dev_driver struct definitions. * * For registering only a single driver see SR_REGISTER_DEV_DRIVER(). * * Example: * @code{c} * #define MY_DRIVER(_name) \ * &(struct sr_dev_driver){ \ * .name = _name, \ * ... * }; * * SR_REGISTER_DEV_DRIVER_LIST(my_driver_infos, * MY_DRIVER("driver 1"), * MY_DRIVER("driver 2"), * ... * ); * @endcode * * @param name Name to use for the driver list identifier. * @param ... Comma separated list of pointers to sr_dev_driver structs. */ #define SR_REGISTER_DEV_DRIVER_LIST(name, ...) \ static const struct sr_dev_driver *name[] \ __attribute__((section (SR_DRIVER_LIST_SECTION), used, \ aligned(sizeof(struct sr_dev_driver *)))) \ = { \ __VA_ARGS__ \ }; /** * Register a hardware driver. * * This macro is used to register a hardware driver with the library. It has * to be used in order to make the driver accessible to applications using the * library. * * The macro invocation should be placed directly under the struct * sr_dev_driver definition. * * Example: * @code{c} * static struct sr_dev_driver driver_info = { * .name = "driver", * .... * }; * SR_REGISTER_DEV_DRIVER(driver_info); * @endcode * * @param name Identifier name of sr_dev_driver struct to register. */ #define SR_REGISTER_DEV_DRIVER(name) \ SR_REGISTER_DEV_DRIVER_LIST(name##_list, &name); SR_API void sr_drivers_init(struct sr_context *context); struct sr_context { struct sr_dev_driver **driver_list; #ifdef HAVE_LIBUSB_1_0 libusb_context *libusb_ctx; #endif sr_resource_open_callback resource_open_cb; sr_resource_close_callback resource_close_cb; sr_resource_read_callback resource_read_cb; void *resource_cb_data; }; /** Input module metadata keys. */ enum sr_input_meta_keys { /** The input filename, if there is one. */ SR_INPUT_META_FILENAME = 0x01, /** The input file's size in bytes. */ SR_INPUT_META_FILESIZE = 0x02, /** The first 128 bytes of the file, provided as a GString. */ SR_INPUT_META_HEADER = 0x04, /** The module cannot identify a file without this metadata. */ SR_INPUT_META_REQUIRED = 0x80, }; /** Input (file) module struct. */ struct sr_input { /** * A pointer to this input module's 'struct sr_input_module'. */ const struct sr_input_module *module; GString *buf; struct sr_dev_inst *sdi; gboolean sdi_ready; void *priv; }; /** Input (file) module driver. */ struct sr_input_module { /** * A unique ID for this input module, suitable for use in command-line * clients, [a-z0-9-]. Must not be NULL. */ const char *id; /** * A unique name for this input module, suitable for use in GUI * clients, can contain UTF-8. Must not be NULL. */ const char *name; /** * A short description of the input module. Must not be NULL. * * This can be displayed by frontends, e.g. when selecting the input * module for saving a file. */ const char *desc; /** * A NULL terminated array of strings containing a list of file name * extensions typical for the input file format, or NULL if there is * no typical extension for this file format. */ const char *const *exts; /** * Zero-terminated list of metadata items the module needs to be able * to identify an input stream. Can be all-zero, if the module cannot * identify streams at all, i.e. has to be forced into use. * * Each item is one of: * SR_INPUT_META_FILENAME * SR_INPUT_META_FILESIZE * SR_INPUT_META_HEADER * * If the high bit (SR_INPUT META_REQUIRED) is set, the module cannot * identify a stream without the given metadata. */ const uint8_t metadata[8]; /** * Returns a NULL-terminated list of options this module can take. * Can be NULL, if the module has no options. */ const struct sr_option *(*options) (void); /** * Check if this input module can load and parse the specified stream. * * @param[in] metadata Metadata the module can use to identify the stream. * @param[out] confidence "Strength" of the detection. * Specialized handlers can take precedence over generic/basic support. * * @retval SR_OK This module knows the format. * @retval SR_ERR_NA There wasn't enough data for this module to * positively identify the format. * @retval SR_ERR_DATA This module knows the format, but cannot handle * it. This means the stream is either corrupt, or indicates a * feature that the module does not support. * @retval SR_ERR This module does not know the format. * * Lower numeric values of 'confidence' mean that the input module * stronger believes in its capability to handle this specific format. * This way, multiple input modules can claim support for a format, * and the application can pick the best match, or try fallbacks * in case of errors. This approach also copes with formats that * are unreliable to detect in the absence of magic signatures. */ int (*format_match) (GHashTable *metadata, unsigned int *confidence); /** * Initialize the input module. * * @retval SR_OK Success * @retval other Negative error code. */ int (*init) (struct sr_input *in, GHashTable *options); /** * Send data to the specified input instance. * * When an input module instance is created with sr_input_new(), this * function is used to feed data to the instance. * * As enough data gets fed into this function to completely populate * the device instance associated with this input instance, this is * guaranteed to return the moment it's ready. This gives the caller * the chance to examine the device instance, attach session callbacks * and so on. * * @retval SR_OK Success * @retval other Negative error code. */ int (*receive) (struct sr_input *in, GString *buf); /** * Signal the input module no more data will come. * * This will cause the module to process any data it may have buffered. * The SR_DF_END packet will also typically be sent at this time. */ int (*end) (struct sr_input *in); /** * Reset the input module's input handling structures. * * Causes the input module to reset its internal state so that we can * re-send the input data from the beginning without having to * re-create the entire input module. * * @retval SR_OK Success. * @retval other Negative error code. */ int (*reset) (struct sr_input *in); /** * This function is called after the caller is finished using * the input module, and can be used to free any internal * resources the module may keep. * * This function is optional. * * @retval SR_OK Success * @retval other Negative error code. */ void (*cleanup) (struct sr_input *in); }; /** Output module instance. */ struct sr_output { /** A pointer to this output's module. */ const struct sr_output_module *module; /** * The device for which this output module is creating output. This * can be used by the module to find out channel names and numbers. */ const struct sr_dev_inst *sdi; /** * The name of the file that the data should be written to. */ const char *filename; /** * A generic pointer which can be used by the module to keep internal * state between calls into its callback functions. * * For example, the module might store a pointer to a chunk of output * there, and only flush it when it reaches a certain size. */ void *priv; }; /** Output module driver. */ struct sr_output_module { /** * A unique ID for this output module, suitable for use in command-line * clients, [a-z0-9-]. Must not be NULL. */ const char *id; /** * A unique name for this output module, suitable for use in GUI * clients, can contain UTF-8. Must not be NULL. */ const char *name; /** * A short description of the output module. Must not be NULL. * * This can be displayed by frontends, e.g. when selecting the output * module for saving a file. */ const char *desc; /** * A NULL terminated array of strings containing a list of file name * extensions typical for the input file format, or NULL if there is * no typical extension for this file format. */ const char *const *exts; /** * Bitfield containing flags that describe certain properties * this output module may or may not have. * @see sr_output_flags */ const uint64_t flags; /** * Returns a NULL-terminated list of options this module can take. * Can be NULL, if the module has no options. */ const struct sr_option *(*options) (void); /** * This function is called once, at the beginning of an output stream. * * The device struct will be available in the output struct passed in, * as well as the param field -- which may be NULL or an empty string, * if no parameter was passed. * * The module can use this to initialize itself, create a struct for * keeping state and storing it in the internal field. * * @param o Pointer to the respective 'struct sr_output'. * * @retval SR_OK Success * @retval other Negative error code. */ int (*init) (struct sr_output *o, GHashTable *options); /** * This function is passed a copy of every packet in the data feed. * Any output generated by the output module in response to the * packet should be returned in a newly allocated GString * out, which will be freed by the caller. * * Packets not of interest to the output module can just be ignored, * and the out parameter set to NULL. * * @param o Pointer to the respective 'struct sr_output'. * @param sdi The device instance that generated the packet. * @param packet The complete packet. * @param out A pointer where a GString * should be stored if * the module generates output, or NULL if not. * * @retval SR_OK Success * @retval other Negative error code. */ int (*receive) (const struct sr_output *o, const struct sr_datafeed_packet *packet, GString **out); /** * This function is called after the caller is finished using * the output module, and can be used to free any internal * resources the module may keep. * * @retval SR_OK Success * @retval other Negative error code. */ int (*cleanup) (struct sr_output *o); }; /** Transform module instance. */ struct sr_transform { /** A pointer to this transform's module. */ const struct sr_transform_module *module; /** * The device for which this transform module is used. This * can be used by the module to find out channel names and numbers. */ const struct sr_dev_inst *sdi; /** * A generic pointer which can be used by the module to keep internal * state between calls into its callback functions. */ void *priv; }; struct sr_transform_module { /** * A unique ID for this transform module, suitable for use in * command-line clients, [a-z0-9-]. Must not be NULL. */ const char *id; /** * A unique name for this transform module, suitable for use in GUI * clients, can contain UTF-8. Must not be NULL. */ const char *name; /** * A short description of the transform module. Must not be NULL. * * This can be displayed by frontends, e.g. when selecting * which transform module(s) to add. */ const char *desc; /** * Returns a NULL-terminated list of options this transform module * can take. Can be NULL, if the transform module has no options. */ const struct sr_option *(*options) (void); /** * This function is called once, at the beginning of a stream. * * @param t Pointer to the respective 'struct sr_transform'. * @param options Hash table of options for this transform module. * Can be NULL if no options are to be used. * * @retval SR_OK Success * @retval other Negative error code. */ int (*init) (struct sr_transform *t, GHashTable *options); /** * This function is passed a pointer to every packet in the data feed. * * It can either return (in packet_out) a pointer to another packet * (possibly the exact same packet it got as input), or NULL. * * @param t Pointer to the respective 'struct sr_transform'. * @param packet_in Pointer to a datafeed packet. * @param packet_out Pointer to the resulting datafeed packet after * this function was run. If NULL, the transform * module intentionally didn't output a new packet. * * @retval SR_OK Success * @retval other Negative error code. */ int (*receive) (const struct sr_transform *t, struct sr_datafeed_packet *packet_in, struct sr_datafeed_packet **packet_out); /** * This function is called after the caller is finished using * the transform module, and can be used to free any internal * resources the module may keep. * * @retval SR_OK Success * @retval other Negative error code. */ int (*cleanup) (struct sr_transform *t); }; #ifdef HAVE_LIBUSB_1_0 /** USB device instance */ struct sr_usb_dev_inst { /** USB bus */ uint8_t bus; /** Device address on USB bus */ uint8_t address; /** libusb device handle */ struct libusb_device_handle *devhdl; }; #endif struct sr_serial_dev_inst; #ifdef HAVE_SERIAL_COMM struct ser_lib_functions; struct ser_hid_chip_functions; struct sr_bt_desc; typedef void (*serial_rx_chunk_callback)(struct sr_serial_dev_inst *serial, void *cb_data, const void *buf, size_t count); struct sr_serial_dev_inst { /** Port name, e.g. '/dev/tty42'. */ char *port; /** Comm params for serial_set_paramstr(). */ char *serialcomm; struct ser_lib_functions *lib_funcs; struct { int bit_rate; int data_bits; int parity_bits; int stop_bits; } comm_params; GString *rcv_buffer; serial_rx_chunk_callback rx_chunk_cb_func; void *rx_chunk_cb_data; #ifdef HAVE_LIBSERIALPORT /** libserialport port handle */ struct sp_port *sp_data; #endif #ifdef HAVE_LIBHIDAPI enum ser_hid_chip_t { SER_HID_CHIP_UNKNOWN, /**!< place holder */ SER_HID_CHIP_BTC_BU86X, /**!< Brymen BU86x */ SER_HID_CHIP_SIL_CP2110, /**!< SiLabs CP2110 */ SER_HID_CHIP_VICTOR_DMM, /**!< Victor 70/86 DMM cable */ SER_HID_CHIP_WCH_CH9325, /**!< WCH CH9325 */ SER_HID_CHIP_LAST, /**!< sentinel */ } hid_chip; struct ser_hid_chip_functions *hid_chip_funcs; char *usb_path; char *usb_serno; const char *hid_path; hid_device *hid_dev; GSList *hid_source_args; #endif #ifdef HAVE_BLUETOOTH enum ser_bt_conn_t { SER_BT_CONN_UNKNOWN, /**!< place holder */ SER_BT_CONN_RFCOMM, /**!< BT classic, RFCOMM channel */ SER_BT_CONN_BLE122, /**!< BLE, BLE122 module, indications */ SER_BT_CONN_NRF51, /**!< BLE, Nordic nRF51, notifications */ SER_BT_CONN_CC254x, /**!< BLE, TI CC254x, notifications */ SER_BT_CONN_MAX, /**!< sentinel */ } bt_conn_type; char *bt_addr_local; char *bt_addr_remote; size_t bt_rfcomm_channel; uint16_t bt_notify_handle_read; uint16_t bt_notify_handle_write; uint16_t bt_notify_handle_cccd; uint16_t bt_notify_value_cccd; struct sr_bt_desc *bt_desc; GSList *bt_source_args; #endif }; #endif struct sr_usbtmc_dev_inst { char *device; int fd; }; /* Private driver context. */ struct drv_context { /** sigrok context */ struct sr_context *sr_ctx; GSList *instances; }; /*--- log.c -----------------------------------------------------------------*/ #if defined(_WIN32) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) /* * On MinGW, we need to specify the gnu_printf format flavor or GCC * will assume non-standard Microsoft printf syntax. */ SR_PRIV int sr_log(int loglevel, const char *format, ...) __attribute__((__format__ (__gnu_printf__, 2, 3))); #else SR_PRIV int sr_log(int loglevel, const char *format, ...) G_GNUC_PRINTF(2, 3); #endif /* Message logging helpers with subsystem-specific prefix string. */ #define sr_spew(...) sr_log(SR_LOG_SPEW, LOG_PREFIX ": " __VA_ARGS__) #define sr_dbg(...) sr_log(SR_LOG_DBG, LOG_PREFIX ": " __VA_ARGS__) #define sr_info(...) sr_log(SR_LOG_INFO, LOG_PREFIX ": " __VA_ARGS__) #define sr_warn(...) sr_log(SR_LOG_WARN, LOG_PREFIX ": " __VA_ARGS__) #define sr_err(...) sr_log(SR_LOG_ERR, LOG_PREFIX ": " __VA_ARGS__) /*--- device.c --------------------------------------------------------------*/ /** Scan options supported by a driver. */ #define SR_CONF_SCAN_OPTIONS 0x7FFF0000 /** Device options for a particular device. */ #define SR_CONF_DEVICE_OPTIONS 0x7FFF0001 /** Mask for separating config keys from capabilities. */ #define SR_CONF_MASK 0x1fffffff /** Values for the changes argument of sr_dev_driver.config_channel_set. */ enum { /** The enabled state of the channel has been changed. */ SR_CHANNEL_SET_ENABLED = 1 << 0, }; SR_PRIV struct sr_channel *sr_channel_new(struct sr_dev_inst *sdi, int index, int type, gboolean enabled, const char *name); SR_PRIV void sr_channel_free(struct sr_channel *ch); SR_PRIV void sr_channel_free_cb(void *p); SR_PRIV struct sr_channel *sr_next_enabled_channel(const struct sr_dev_inst *sdi, struct sr_channel *cur_channel); SR_PRIV gboolean sr_channels_differ(struct sr_channel *ch1, struct sr_channel *ch2); SR_PRIV gboolean sr_channel_lists_differ(GSList *l1, GSList *l2); /** Device instance data */ struct sr_dev_inst { /** Device driver. */ struct sr_dev_driver *driver; /** Device instance status. SR_ST_NOT_FOUND, etc. */ int status; /** Device instance type. SR_INST_USB, etc. */ int inst_type; /** Device vendor. */ char *vendor; /** Device model. */ char *model; /** Device version. */ char *version; /** Serial number. */ char *serial_num; /** Connection string to uniquely identify devices. */ char *connection_id; /** List of channels. */ GSList *channels; /** List of sr_channel_group structs */ GSList *channel_groups; /** Device instance connection data (used?) */ void *conn; /** Device instance private data (used?) */ void *priv; /** Session to which this device is currently assigned. */ struct sr_session *session; }; /* Generic device instances */ SR_PRIV void sr_dev_inst_free(struct sr_dev_inst *sdi); #ifdef HAVE_LIBUSB_1_0 /* USB-specific instances */ SR_PRIV struct sr_usb_dev_inst *sr_usb_dev_inst_new(uint8_t bus, uint8_t address, struct libusb_device_handle *hdl); SR_PRIV void sr_usb_dev_inst_free(struct sr_usb_dev_inst *usb); #endif #ifdef HAVE_SERIAL_COMM #ifndef HAVE_LIBSERIALPORT /* * Some identifiers which initially got provided by libserialport are * used internally within the libsigrok serial layer's implementation, * while libserialport no longer is the exclusive provider of serial * communication support. Declare the identifiers here so they remain * available across all build configurations. */ enum libsp_parity { SP_PARITY_NONE = 0, SP_PARITY_ODD = 1, SP_PARITY_EVEN = 2, SP_PARITY_MARK = 3, SP_PARITY_SPACE = 4, }; enum libsp_flowcontrol { SP_FLOWCONTROL_NONE = 0, SP_FLOWCONTROL_XONXOFF = 1, SP_FLOWCONTROL_RTSCTS = 2, SP_FLOWCONTROL_DTRDSR = 3, }; #endif /* Serial-specific instances */ SR_PRIV struct sr_serial_dev_inst *sr_serial_dev_inst_new(const char *port, const char *serialcomm); SR_PRIV void sr_serial_dev_inst_free(struct sr_serial_dev_inst *serial); #endif /* USBTMC-specific instances */ SR_PRIV struct sr_usbtmc_dev_inst *sr_usbtmc_dev_inst_new(const char *device); SR_PRIV void sr_usbtmc_dev_inst_free(struct sr_usbtmc_dev_inst *usbtmc); /*--- hwdriver.c ------------------------------------------------------------*/ SR_PRIV const GVariantType *sr_variant_type_get(int datatype); SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *data); SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx); SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data); SR_PRIV void sr_config_free(struct sr_config *src); SR_PRIV int sr_dev_acquisition_start(struct sr_dev_inst *sdi); SR_PRIV int sr_dev_acquisition_stop(struct sr_dev_inst *sdi); /*--- session.c -------------------------------------------------------------*/ struct sr_session { /** Context this session exists in. */ struct sr_context *ctx; /** List of struct sr_dev_inst pointers. */ GSList *devs; /** List of struct sr_dev_inst pointers owned by this session. */ GSList *owned_devs; /** List of struct datafeed_callback pointers. */ GSList *datafeed_callbacks; GSList *transforms; struct sr_trigger *trigger; /** Callback to invoke on session stop. */ sr_session_stopped_callback stopped_callback; /** User data to be passed to the session stop callback. */ void *stopped_cb_data; /** Mutex protecting the main context pointer. */ GMutex main_mutex; /** Context of the session main loop. */ GMainContext *main_context; /** Registered event sources for this session. */ GHashTable *event_sources; /** Session main loop. */ GMainLoop *main_loop; /** ID of idle source for dispatching the session stop notification. */ unsigned int stop_check_id; /** Whether the session has been started. */ gboolean running; }; SR_PRIV int sr_session_source_add_internal(struct sr_session *session, void *key, GSource *source); SR_PRIV int sr_session_source_remove_internal(struct sr_session *session, void *key); SR_PRIV int sr_session_source_destroyed(struct sr_session *session, void *key, GSource *source); SR_PRIV int sr_session_fd_source_add(struct sr_session *session, void *key, gintptr fd, int events, int timeout, sr_receive_data_callback cb, void *cb_data); SR_PRIV int sr_session_source_add(struct sr_session *session, int fd, int events, int timeout, sr_receive_data_callback cb, void *cb_data); SR_PRIV int sr_session_source_add_pollfd(struct sr_session *session, GPollFD *pollfd, int timeout, sr_receive_data_callback cb, void *cb_data); SR_PRIV int sr_session_source_add_channel(struct sr_session *session, GIOChannel *channel, int events, int timeout, sr_receive_data_callback cb, void *cb_data); SR_PRIV int sr_session_source_remove(struct sr_session *session, int fd); SR_PRIV int sr_session_source_remove_pollfd(struct sr_session *session, GPollFD *pollfd); SR_PRIV int sr_session_source_remove_channel(struct sr_session *session, GIOChannel *channel); SR_PRIV int sr_session_send_meta(const struct sr_dev_inst *sdi, uint32_t key, GVariant *var); SR_PRIV int sr_session_send(const struct sr_dev_inst *sdi, const struct sr_datafeed_packet *packet); SR_PRIV int sr_sessionfile_check(const char *filename); SR_PRIV struct sr_dev_inst *sr_session_prepare_sdi(const char *filename, struct sr_session **session); /*--- session_file.c --------------------------------------------------------*/ #if !HAVE_ZIP_DISCARD /* Replace zip_discard() if not available. */ #define zip_discard(zip) sr_zip_discard(zip) SR_PRIV void sr_zip_discard(struct zip *archive); #endif SR_PRIV GKeyFile *sr_sessionfile_read_metadata(struct zip *archive, const struct zip_stat *entry); /*--- analog.c --------------------------------------------------------------*/ SR_PRIV int sr_analog_init(struct sr_datafeed_analog *analog, struct sr_analog_encoding *encoding, struct sr_analog_meaning *meaning, struct sr_analog_spec *spec, int digits); /*--- std.c -----------------------------------------------------------------*/ typedef int (*dev_close_callback)(struct sr_dev_inst *sdi); typedef void (*std_dev_clear_callback)(void *priv); SR_PRIV int std_init(struct sr_dev_driver *di, struct sr_context *sr_ctx); SR_PRIV int std_cleanup(const struct sr_dev_driver *di); SR_PRIV int std_dummy_dev_open(struct sr_dev_inst *sdi); SR_PRIV int std_dummy_dev_close(struct sr_dev_inst *sdi); SR_PRIV int std_dummy_dev_acquisition_start(const struct sr_dev_inst *sdi); SR_PRIV int std_dummy_dev_acquisition_stop(struct sr_dev_inst *sdi); #ifdef HAVE_SERIAL_COMM SR_PRIV int std_serial_dev_open(struct sr_dev_inst *sdi); SR_PRIV int std_serial_dev_acquisition_stop(struct sr_dev_inst *sdi); #endif SR_PRIV int std_session_send_df_header(const struct sr_dev_inst *sdi); SR_PRIV int std_session_send_df_end(const struct sr_dev_inst *sdi); SR_PRIV int std_session_send_df_trigger(const struct sr_dev_inst *sdi); SR_PRIV int std_session_send_df_frame_begin(const struct sr_dev_inst *sdi); SR_PRIV int std_session_send_df_frame_end(const struct sr_dev_inst *sdi); SR_PRIV int std_dev_clear_with_callback(const struct sr_dev_driver *driver, std_dev_clear_callback clear_private); SR_PRIV int std_dev_clear(const struct sr_dev_driver *driver); SR_PRIV GSList *std_dev_list(const struct sr_dev_driver *di); SR_PRIV int std_serial_dev_close(struct sr_dev_inst *sdi); SR_PRIV GSList *std_scan_complete(struct sr_dev_driver *di, GSList *devices); SR_PRIV int std_opts_config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg, const uint32_t scanopts[], size_t scansize, const uint32_t drvopts[], size_t drvsize, const uint32_t devopts[], size_t devsize); extern SR_PRIV const uint32_t NO_OPTS[1]; #define STD_CONFIG_LIST(key, data, sdi, cg, scanopts, drvopts, devopts) \ std_opts_config_list(key, data, sdi, cg, ARRAY_AND_SIZE(scanopts), \ ARRAY_AND_SIZE(drvopts), ARRAY_AND_SIZE(devopts)) SR_PRIV GVariant *std_gvar_tuple_array(const uint64_t a[][2], unsigned int n); SR_PRIV GVariant *std_gvar_tuple_rational(const struct sr_rational *r, unsigned int n); SR_PRIV GVariant *std_gvar_samplerates(const uint64_t samplerates[], unsigned int n); SR_PRIV GVariant *std_gvar_samplerates_steps(const uint64_t samplerates[], unsigned int n); SR_PRIV GVariant *std_gvar_min_max_step(double min, double max, double step); SR_PRIV GVariant *std_gvar_min_max_step_array(const double a[3]); SR_PRIV GVariant *std_gvar_min_max_step_thresholds(const double dmin, const double dmax, const double dstep); SR_PRIV GVariant *std_gvar_tuple_u64(uint64_t low, uint64_t high); SR_PRIV GVariant *std_gvar_tuple_double(double low, double high); SR_PRIV GVariant *std_gvar_array_i32(const int32_t a[], unsigned int n); SR_PRIV GVariant *std_gvar_array_u32(const uint32_t a[], unsigned int n); SR_PRIV GVariant *std_gvar_array_u64(const uint64_t a[], unsigned int n); SR_PRIV GVariant *std_gvar_array_str(const char *a[], unsigned int n); SR_PRIV GVariant *std_gvar_thresholds(const double a[][2], unsigned int n); SR_PRIV int std_str_idx(GVariant *data, const char *a[], unsigned int n); SR_PRIV int std_u64_idx(GVariant *data, const uint64_t a[], unsigned int n); SR_PRIV int std_u8_idx(GVariant *data, const uint8_t a[], unsigned int n); SR_PRIV int std_str_idx_s(const char *s, const char *a[], unsigned int n); SR_PRIV int std_u8_idx_s(uint8_t b, const uint8_t a[], unsigned int n); SR_PRIV int std_u64_tuple_idx(GVariant *data, const uint64_t a[][2], unsigned int n); SR_PRIV int std_double_tuple_idx(GVariant *data, const double a[][2], unsigned int n); SR_PRIV int std_double_tuple_idx_d0(const double d, const double a[][2], unsigned int n); SR_PRIV int std_cg_idx(const struct sr_channel_group *cg, struct sr_channel_group *a[], unsigned int n); SR_PRIV int std_dummy_set_params(struct sr_serial_dev_inst *serial, int baudrate, int bits, int parity, int stopbits, int flowcontrol, int rts, int dtr); /*--- resource.c ------------------------------------------------------------*/ SR_PRIV int64_t sr_file_get_size(FILE *file); SR_PRIV int sr_resource_open(struct sr_context *ctx, struct sr_resource *res, int type, const char *name) G_GNUC_WARN_UNUSED_RESULT; SR_PRIV int sr_resource_close(struct sr_context *ctx, struct sr_resource *res); SR_PRIV gssize sr_resource_read(struct sr_context *ctx, const struct sr_resource *res, void *buf, size_t count) G_GNUC_WARN_UNUSED_RESULT; SR_PRIV void *sr_resource_load(struct sr_context *ctx, int type, const char *name, size_t *size, size_t max_size) G_GNUC_MALLOC G_GNUC_WARN_UNUSED_RESULT; /*--- strutil.c -------------------------------------------------------------*/ SR_PRIV int sr_atol(const char *str, long *ret); SR_PRIV int sr_atol_base(const char *str, long *ret, char **end, int base); SR_PRIV int sr_atoi(const char *str, int *ret); SR_PRIV int sr_atod(const char *str, double *ret); SR_PRIV int sr_atof(const char *str, float *ret); SR_PRIV int sr_atod_ascii(const char *str, double *ret); SR_PRIV int sr_atof_ascii(const char *str, float *ret); SR_PRIV GString *sr_hexdump_new(const uint8_t *data, const size_t len); SR_PRIV void sr_hexdump_free(GString *s); /*--- soft-trigger.c --------------------------------------------------------*/ struct soft_trigger_logic { const struct sr_dev_inst *sdi; const struct sr_trigger *trigger; int count; int unitsize; int cur_stage; uint8_t *prev_sample; uint8_t *pre_trigger_buffer; uint8_t *pre_trigger_head; int pre_trigger_size; int pre_trigger_fill; }; SR_PRIV int logic_channel_unitsize(GSList *channels); SR_PRIV struct soft_trigger_logic *soft_trigger_logic_new( const struct sr_dev_inst *sdi, struct sr_trigger *trigger, int pre_trigger_samples); SR_PRIV void soft_trigger_logic_free(struct soft_trigger_logic *st); SR_PRIV int soft_trigger_logic_check(struct soft_trigger_logic *st, uint8_t *buf, int len, int *pre_trigger_samples); /*--- serial.c --------------------------------------------------------------*/ #ifdef HAVE_SERIAL_COMM enum { SERIAL_RDWR = 1, SERIAL_RDONLY = 2, }; typedef gboolean (*packet_valid_callback)(const uint8_t *buf); typedef GSList *(*sr_ser_list_append_t)(GSList *devs, const char *name, const char *desc); typedef GSList *(*sr_ser_find_append_t)(GSList *devs, const char *name); SR_PRIV int serial_open(struct sr_serial_dev_inst *serial, int flags); SR_PRIV int serial_close(struct sr_serial_dev_inst *serial); SR_PRIV int serial_flush(struct sr_serial_dev_inst *serial); SR_PRIV int serial_drain(struct sr_serial_dev_inst *serial); SR_PRIV size_t serial_has_receive_data(struct sr_serial_dev_inst *serial); SR_PRIV int serial_write_blocking(struct sr_serial_dev_inst *serial, const void *buf, size_t count, unsigned int timeout_ms); SR_PRIV int serial_write_nonblocking(struct sr_serial_dev_inst *serial, const void *buf, size_t count); SR_PRIV int serial_read_blocking(struct sr_serial_dev_inst *serial, void *buf, size_t count, unsigned int timeout_ms); SR_PRIV int serial_read_nonblocking(struct sr_serial_dev_inst *serial, void *buf, size_t count); SR_PRIV int serial_set_read_chunk_cb(struct sr_serial_dev_inst *serial, serial_rx_chunk_callback cb, void *cb_data); SR_PRIV int serial_set_params(struct sr_serial_dev_inst *serial, int baudrate, int bits, int parity, int stopbits, int flowcontrol, int rts, int dtr); SR_PRIV int serial_set_paramstr(struct sr_serial_dev_inst *serial, const char *paramstr); SR_PRIV int serial_readline(struct sr_serial_dev_inst *serial, char **buf, int *buflen, gint64 timeout_ms); SR_PRIV int serial_stream_detect(struct sr_serial_dev_inst *serial, uint8_t *buf, size_t *buflen, size_t packet_size, packet_valid_callback is_valid, uint64_t timeout_ms); SR_PRIV int sr_serial_extract_options(GSList *options, const char **serial_device, const char **serial_options); SR_PRIV int serial_source_add(struct sr_session *session, struct sr_serial_dev_inst *serial, int events, int timeout, sr_receive_data_callback cb, void *cb_data); SR_PRIV int serial_source_remove(struct sr_session *session, struct sr_serial_dev_inst *serial); SR_PRIV GSList *sr_serial_find_usb(uint16_t vendor_id, uint16_t product_id); SR_PRIV int serial_timeout(struct sr_serial_dev_inst *port, int num_bytes); SR_PRIV void sr_ser_discard_queued_data(struct sr_serial_dev_inst *serial); SR_PRIV size_t sr_ser_has_queued_data(struct sr_serial_dev_inst *serial); SR_PRIV void sr_ser_queue_rx_data(struct sr_serial_dev_inst *serial, const uint8_t *data, size_t len); SR_PRIV size_t sr_ser_unqueue_rx_data(struct sr_serial_dev_inst *serial, uint8_t *data, size_t len); struct ser_lib_functions { int (*open)(struct sr_serial_dev_inst *serial, int flags); int (*close)(struct sr_serial_dev_inst *serial); int (*flush)(struct sr_serial_dev_inst *serial); int (*drain)(struct sr_serial_dev_inst *serial); int (*write)(struct sr_serial_dev_inst *serial, const void *buf, size_t count, int nonblocking, unsigned int timeout_ms); int (*read)(struct sr_serial_dev_inst *serial, void *buf, size_t count, int nonblocking, unsigned int timeout_ms); int (*set_params)(struct sr_serial_dev_inst *serial, int baudrate, int bits, int parity, int stopbits, int flowcontrol, int rts, int dtr); int (*setup_source_add)(struct sr_session *session, struct sr_serial_dev_inst *serial, int events, int timeout, sr_receive_data_callback cb, void *cb_data); int (*setup_source_remove)(struct sr_session *session, struct sr_serial_dev_inst *serial); GSList *(*list)(GSList *list, sr_ser_list_append_t append); GSList *(*find_usb)(GSList *list, sr_ser_find_append_t append, uint16_t vendor_id, uint16_t product_id); int (*get_frame_format)(struct sr_serial_dev_inst *serial, int *baud, int *bits); size_t (*get_rx_avail)(struct sr_serial_dev_inst *serial); }; extern SR_PRIV struct ser_lib_functions *ser_lib_funcs_libsp; SR_PRIV int ser_name_is_hid(struct sr_serial_dev_inst *serial); extern SR_PRIV struct ser_lib_functions *ser_lib_funcs_hid; SR_PRIV int ser_name_is_bt(struct sr_serial_dev_inst *serial); extern SR_PRIV struct ser_lib_functions *ser_lib_funcs_bt; #ifdef HAVE_LIBHIDAPI struct vid_pid_item { uint16_t vid, pid; }; struct ser_hid_chip_functions { const char *chipname; const char *chipdesc; const struct vid_pid_item *vid_pid_items; const int max_bytes_per_request; int (*set_params)(struct sr_serial_dev_inst *serial, int baudrate, int bits, int parity, int stopbits, int flowcontrol, int rts, int dtr); int (*read_bytes)(struct sr_serial_dev_inst *serial, uint8_t *data, int space, unsigned int timeout); int (*write_bytes)(struct sr_serial_dev_inst *serial, const uint8_t *data, int space); int (*flush)(struct sr_serial_dev_inst *serial); int (*drain)(struct sr_serial_dev_inst *serial); }; extern SR_PRIV struct ser_hid_chip_functions *ser_hid_chip_funcs_bu86x; extern SR_PRIV struct ser_hid_chip_functions *ser_hid_chip_funcs_ch9325; extern SR_PRIV struct ser_hid_chip_functions *ser_hid_chip_funcs_cp2110; extern SR_PRIV struct ser_hid_chip_functions *ser_hid_chip_funcs_victor; SR_PRIV const char *ser_hid_chip_find_name_vid_pid(uint16_t vid, uint16_t pid); #endif #endif /*--- bt/ API ---------------------------------------------------------------*/ #ifdef HAVE_BLUETOOTH SR_PRIV const char *sr_bt_adapter_get_address(size_t idx); struct sr_bt_desc; typedef void (*sr_bt_scan_cb)(void *cb_data, const char *addr, const char *name); typedef int (*sr_bt_data_cb)(void *cb_data, uint8_t *data, size_t dlen); SR_PRIV struct sr_bt_desc *sr_bt_desc_new(void); SR_PRIV void sr_bt_desc_free(struct sr_bt_desc *desc); SR_PRIV int sr_bt_config_cb_scan(struct sr_bt_desc *desc, sr_bt_scan_cb cb, void *cb_data); SR_PRIV int sr_bt_config_cb_data(struct sr_bt_desc *desc, sr_bt_data_cb cb, void *cb_data); SR_PRIV int sr_bt_config_addr_local(struct sr_bt_desc *desc, const char *addr); SR_PRIV int sr_bt_config_addr_remote(struct sr_bt_desc *desc, const char *addr); SR_PRIV int sr_bt_config_rfcomm(struct sr_bt_desc *desc, size_t channel); SR_PRIV int sr_bt_config_notify(struct sr_bt_desc *desc, uint16_t read_handle, uint16_t write_handle, uint16_t cccd_handle, uint16_t cccd_value); SR_PRIV int sr_bt_scan_le(struct sr_bt_desc *desc, int duration); SR_PRIV int sr_bt_scan_bt(struct sr_bt_desc *desc, int duration); SR_PRIV int sr_bt_connect_ble(struct sr_bt_desc *desc); SR_PRIV int sr_bt_connect_rfcomm(struct sr_bt_desc *desc); SR_PRIV void sr_bt_disconnect(struct sr_bt_desc *desc); SR_PRIV ssize_t sr_bt_read(struct sr_bt_desc *desc, void *data, size_t len); SR_PRIV ssize_t sr_bt_write(struct sr_bt_desc *desc, const void *data, size_t len); SR_PRIV int sr_bt_start_notify(struct sr_bt_desc *desc); SR_PRIV int sr_bt_check_notify(struct sr_bt_desc *desc); #endif /*--- ezusb.c ---------------------------------------------------------------*/ #ifdef HAVE_LIBUSB_1_0 SR_PRIV int ezusb_reset(struct libusb_device_handle *hdl, int set_clear); SR_PRIV int ezusb_install_firmware(struct sr_context *ctx, libusb_device_handle *hdl, const char *name); SR_PRIV int ezusb_upload_firmware(struct sr_context *ctx, libusb_device *dev, int configuration, const char *name); #endif /*--- usb.c -----------------------------------------------------------------*/ #ifdef HAVE_LIBUSB_1_0 SR_PRIV GSList *sr_usb_find(libusb_context *usb_ctx, const char *conn); SR_PRIV int sr_usb_open(libusb_context *usb_ctx, struct sr_usb_dev_inst *usb); SR_PRIV void sr_usb_close(struct sr_usb_dev_inst *usb); SR_PRIV int usb_source_add(struct sr_session *session, struct sr_context *ctx, int timeout, sr_receive_data_callback cb, void *cb_data); SR_PRIV int usb_source_remove(struct sr_session *session, struct sr_context *ctx); SR_PRIV int usb_get_port_path(libusb_device *dev, char *path, int path_len); SR_PRIV gboolean usb_match_manuf_prod(libusb_device *dev, const char *manufacturer, const char *product); #endif /*--- modbus/modbus.c -------------------------------------------------------*/ struct sr_modbus_dev_inst { const char *name; const char *prefix; int priv_size; GSList *(*scan)(int modbusaddr); int (*dev_inst_new)(void *priv, const char *resource, char **params, const char *serialcomm, int modbusaddr); int (*open)(void *priv); int (*source_add)(struct sr_session *session, void *priv, int events, int timeout, sr_receive_data_callback cb, void *cb_data); int (*source_remove)(struct sr_session *session, void *priv); int (*send)(void *priv, const uint8_t *buffer, int buffer_size); int (*read_begin)(void *priv, uint8_t *function_code); int (*read_data)(void *priv, uint8_t *buf, int maxlen); int (*read_end)(void *priv); int (*close)(void *priv); void (*free)(void *priv); unsigned int read_timeout_ms; void *priv; }; SR_PRIV GSList *sr_modbus_scan(struct drv_context *drvc, GSList *options, struct sr_dev_inst *(*probe_device)(struct sr_modbus_dev_inst *modbus)); SR_PRIV struct sr_modbus_dev_inst *modbus_dev_inst_new(const char *resource, const char *serialcomm, int modbusaddr); SR_PRIV int sr_modbus_open(struct sr_modbus_dev_inst *modbus); SR_PRIV int sr_modbus_source_add(struct sr_session *session, struct sr_modbus_dev_inst *modbus, int events, int timeout, sr_receive_data_callback cb, void *cb_data); SR_PRIV int sr_modbus_source_remove(struct sr_session *session, struct sr_modbus_dev_inst *modbus); SR_PRIV int sr_modbus_request(struct sr_modbus_dev_inst *modbus, uint8_t *request, int request_size); SR_PRIV int sr_modbus_reply(struct sr_modbus_dev_inst *modbus, uint8_t *reply, int reply_size); SR_PRIV int sr_modbus_request_reply(struct sr_modbus_dev_inst *modbus, uint8_t *request, int request_size, uint8_t *reply, int reply_size); SR_PRIV int sr_modbus_read_coils(struct sr_modbus_dev_inst *modbus, int address, int nb_coils, uint8_t *coils); SR_PRIV int sr_modbus_read_holding_registers(struct sr_modbus_dev_inst *modbus, int address, int nb_registers, uint16_t *registers); SR_PRIV int sr_modbus_write_coil(struct sr_modbus_dev_inst *modbus, int address, int value); SR_PRIV int sr_modbus_write_multiple_registers(struct sr_modbus_dev_inst*modbus, int address, int nb_registers, uint16_t *registers); SR_PRIV int sr_modbus_close(struct sr_modbus_dev_inst *modbus); SR_PRIV void sr_modbus_free(struct sr_modbus_dev_inst *modbus); /*--- dmm/es519xx.c ---------------------------------------------------------*/ /** * All 11-byte es519xx chips repeat each block twice for each conversion cycle * so always read 2 blocks at a time. */ #define ES519XX_11B_PACKET_SIZE (11 * 2) #define ES519XX_14B_PACKET_SIZE 14 struct es519xx_info { gboolean is_judge, is_voltage, is_auto, is_micro, is_current; gboolean is_milli, is_resistance, is_continuity, is_diode; gboolean is_frequency, is_rpm, is_capacitance, is_duty_cycle; gboolean is_temperature, is_celsius, is_fahrenheit; gboolean is_adp0, is_adp1, is_adp2, is_adp3; gboolean is_sign, is_batt, is_ol, is_pmax, is_pmin, is_apo; gboolean is_dc, is_ac, is_vahz, is_min, is_max, is_rel, is_hold; gboolean is_digit4, is_ul, is_vasel, is_vbar, is_lpf1, is_lpf0, is_rmr; uint32_t baudrate; int packet_size; gboolean alt_functions, fivedigits, clampmeter, selectable_lpf; int digits; }; SR_PRIV gboolean sr_es519xx_2400_11b_packet_valid(const uint8_t *buf); SR_PRIV int sr_es519xx_2400_11b_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); SR_PRIV gboolean sr_es519xx_2400_11b_altfn_packet_valid(const uint8_t *buf); SR_PRIV int sr_es519xx_2400_11b_altfn_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); SR_PRIV gboolean sr_es519xx_19200_11b_5digits_packet_valid(const uint8_t *buf); SR_PRIV int sr_es519xx_19200_11b_5digits_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); SR_PRIV gboolean sr_es519xx_19200_11b_clamp_packet_valid(const uint8_t *buf); SR_PRIV int sr_es519xx_19200_11b_clamp_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); SR_PRIV gboolean sr_es519xx_19200_11b_packet_valid(const uint8_t *buf); SR_PRIV int sr_es519xx_19200_11b_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); SR_PRIV gboolean sr_es519xx_19200_14b_packet_valid(const uint8_t *buf); SR_PRIV int sr_es519xx_19200_14b_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); SR_PRIV gboolean sr_es519xx_19200_14b_sel_lpf_packet_valid(const uint8_t *buf); SR_PRIV int sr_es519xx_19200_14b_sel_lpf_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/fs9922.c ----------------------------------------------------------*/ #define FS9922_PACKET_SIZE 14 struct fs9922_info { gboolean is_auto, is_dc, is_ac, is_rel, is_hold, is_bpn, is_z1, is_z2; gboolean is_max, is_min, is_apo, is_bat, is_nano, is_z3, is_micro; gboolean is_milli, is_kilo, is_mega, is_beep, is_diode, is_percent; gboolean is_z4, is_volt, is_ampere, is_ohm, is_hfe, is_hertz, is_farad; gboolean is_celsius, is_fahrenheit; int bargraph_sign, bargraph_value; }; SR_PRIV gboolean sr_fs9922_packet_valid(const uint8_t *buf); SR_PRIV int sr_fs9922_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); SR_PRIV void sr_fs9922_z1_diode(struct sr_datafeed_analog *analog, void *info); /*--- dmm/fs9721.c ----------------------------------------------------------*/ #define FS9721_PACKET_SIZE 14 struct fs9721_info { gboolean is_ac, is_dc, is_auto, is_rs232, is_micro, is_nano, is_kilo; gboolean is_diode, is_milli, is_percent, is_mega, is_beep, is_farad; gboolean is_ohm, is_rel, is_hold, is_ampere, is_volt, is_hz, is_bat; gboolean is_c2c1_11, is_c2c1_10, is_c2c1_01, is_c2c1_00, is_sign; }; SR_PRIV gboolean sr_fs9721_packet_valid(const uint8_t *buf); SR_PRIV int sr_fs9721_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); SR_PRIV void sr_fs9721_00_temp_c(struct sr_datafeed_analog *analog, void *info); SR_PRIV void sr_fs9721_01_temp_c(struct sr_datafeed_analog *analog, void *info); SR_PRIV void sr_fs9721_10_temp_c(struct sr_datafeed_analog *analog, void *info); SR_PRIV void sr_fs9721_01_10_temp_f_c(struct sr_datafeed_analog *analog, void *info); SR_PRIV void sr_fs9721_max_c_min(struct sr_datafeed_analog *analog, void *info); /*--- dmm/ms2115b.c ---------------------------------------------------------*/ #define MS2115B_PACKET_SIZE 9 enum ms2115b_display { MS2115B_DISPLAY_MAIN, MS2115B_DISPLAY_SUB, MS2115B_DISPLAY_COUNT, }; struct ms2115b_info { /* Selected channel. */ size_t ch_idx; gboolean is_ac, is_dc, is_auto; gboolean is_diode, is_beep, is_farad; gboolean is_ohm, is_ampere, is_volt, is_hz; gboolean is_duty_cycle, is_percent; }; extern SR_PRIV const char *ms2115b_channel_formats[]; SR_PRIV gboolean sr_ms2115b_packet_valid(const uint8_t *buf); SR_PRIV int sr_ms2115b_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/ms8250d.c ---------------------------------------------------------*/ #define MS8250D_PACKET_SIZE 18 struct ms8250d_info { gboolean is_ac, is_dc, is_auto, is_rs232, is_micro, is_nano, is_kilo; gboolean is_diode, is_milli, is_percent, is_mega, is_beep, is_farad; gboolean is_ohm, is_rel, is_hold, is_ampere, is_volt, is_hz, is_bat; gboolean is_ncv, is_min, is_max, is_sign, is_autotimer; }; SR_PRIV gboolean sr_ms8250d_packet_valid(const uint8_t *buf); SR_PRIV int sr_ms8250d_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/dtm0660.c ---------------------------------------------------------*/ #define DTM0660_PACKET_SIZE 15 struct dtm0660_info { gboolean is_ac, is_dc, is_auto, is_rs232, is_micro, is_nano, is_kilo; gboolean is_diode, is_milli, is_percent, is_mega, is_beep, is_farad; gboolean is_ohm, is_rel, is_hold, is_ampere, is_volt, is_hz, is_bat; gboolean is_degf, is_degc, is_c2c1_01, is_c2c1_00, is_apo, is_min; gboolean is_minmax, is_max, is_sign; }; SR_PRIV gboolean sr_dtm0660_packet_valid(const uint8_t *buf); SR_PRIV int sr_dtm0660_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/m2110.c -----------------------------------------------------------*/ #define BBCGM_M2110_PACKET_SIZE 9 /* Dummy info struct. The parser does not use it. */ struct m2110_info { int dummy; }; SR_PRIV gboolean sr_m2110_packet_valid(const uint8_t *buf); SR_PRIV int sr_m2110_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/metex14.c ---------------------------------------------------------*/ #define METEX14_PACKET_SIZE 14 struct metex14_info { size_t ch_idx; gboolean is_ac, is_dc, is_resistance, is_capacity, is_temperature; gboolean is_diode, is_frequency, is_ampere, is_volt, is_farad; gboolean is_hertz, is_ohm, is_celsius, is_fahrenheit, is_watt; gboolean is_pico, is_nano, is_micro, is_milli, is_kilo, is_mega; gboolean is_gain, is_decibel, is_power, is_decibel_mw, is_power_factor; gboolean is_hfe, is_unitless, is_logic, is_min, is_max, is_avg; }; #ifdef HAVE_SERIAL_COMM SR_PRIV int sr_metex14_packet_request(struct sr_serial_dev_inst *serial); #endif SR_PRIV gboolean sr_metex14_packet_valid(const uint8_t *buf); SR_PRIV int sr_metex14_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); SR_PRIV gboolean sr_metex14_4packets_valid(const uint8_t *buf); SR_PRIV int sr_metex14_4packets_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/rs9lcd.c ----------------------------------------------------------*/ #define RS9LCD_PACKET_SIZE 9 /* Dummy info struct. The parser does not use it. */ struct rs9lcd_info { int dummy; }; SR_PRIV gboolean sr_rs9lcd_packet_valid(const uint8_t *buf); SR_PRIV int sr_rs9lcd_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/bm25x.c -----------------------------------------------------------*/ #define BRYMEN_BM25X_PACKET_SIZE 15 /* Dummy info struct. The parser does not use it. */ struct bm25x_info { int dummy; }; SR_PRIV gboolean sr_brymen_bm25x_packet_valid(const uint8_t *buf); SR_PRIV int sr_brymen_bm25x_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/bm86x.c -----------------------------------------------------------*/ #define BRYMEN_BM86X_PACKET_SIZE 24 #define BRYMEN_BM86X_DISPLAY_COUNT 2 struct brymen_bm86x_info { size_t ch_idx; }; #ifdef HAVE_SERIAL_COMM SR_PRIV int sr_brymen_bm86x_packet_request(struct sr_serial_dev_inst *serial); #endif SR_PRIV gboolean sr_brymen_bm86x_packet_valid(const uint8_t *buf); SR_PRIV int sr_brymen_bm86x_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/ut71x.c -----------------------------------------------------------*/ #define UT71X_PACKET_SIZE 11 struct ut71x_info { gboolean is_voltage, is_resistance, is_capacitance, is_temperature; gboolean is_celsius, is_fahrenheit, is_current, is_continuity; gboolean is_diode, is_frequency, is_duty_cycle, is_dc, is_ac; gboolean is_auto, is_manual, is_sign, is_power, is_loop_current; }; SR_PRIV gboolean sr_ut71x_packet_valid(const uint8_t *buf); SR_PRIV int sr_ut71x_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/vc870.c -----------------------------------------------------------*/ #define VC870_PACKET_SIZE 23 struct vc870_info { gboolean is_voltage, is_dc, is_ac, is_temperature, is_resistance; gboolean is_continuity, is_capacitance, is_diode, is_loop_current; gboolean is_current, is_micro, is_milli, is_power; gboolean is_power_factor_freq, is_power_apparent_power, is_v_a_rms_value; gboolean is_sign2, is_sign1, is_batt, is_ol1, is_max, is_min; gboolean is_maxmin, is_rel, is_ol2, is_open, is_manu, is_hold; gboolean is_light, is_usb, is_warning, is_auto_power, is_misplug_warn; gboolean is_lo, is_hi, is_open2; gboolean is_frequency, is_dual_display, is_auto; }; SR_PRIV gboolean sr_vc870_packet_valid(const uint8_t *buf); SR_PRIV int sr_vc870_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/vc96.c ------------------------------------------------------------*/ #define VC96_PACKET_SIZE 13 struct vc96_info { size_t ch_idx; gboolean is_ac, is_dc, is_resistance, is_diode, is_ampere, is_volt; gboolean is_ohm, is_micro, is_milli, is_kilo, is_mega, is_hfe; gboolean is_unitless; }; SR_PRIV gboolean sr_vc96_packet_valid(const uint8_t *buf); SR_PRIV int sr_vc96_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- lcr/es51919.c ---------------------------------------------------------*/ /* Acquisition details which apply to all supported serial-lcr devices. */ struct lcr_parse_info { size_t ch_idx; uint64_t output_freq; const char *circuit_model; }; #define ES51919_PACKET_SIZE 17 #define ES51919_CHANNEL_COUNT 2 #define ES51919_COMM_PARAM "9600/8n1/rts=1/dtr=1" SR_PRIV int es51919_config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg); SR_PRIV int es51919_config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg); SR_PRIV int es51919_config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg); SR_PRIV gboolean es51919_packet_valid(const uint8_t *pkt); SR_PRIV int es51919_packet_parse(const uint8_t *pkt, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- lcr/vc4080.c ----------------------------------------------------------*/ /* Note: Also uses 'struct lcr_parse_info' from es51919 above. */ #define VC4080_PACKET_SIZE 39 #define VC4080_COMM_PARAM "1200/8n1" #define VC4080_WITH_DQ_CHANS 0 /* Enable separate D/Q channels? */ enum vc4080_display { VC4080_DISPLAY_PRIMARY, VC4080_DISPLAY_SECONDARY, #if VC4080_WITH_DQ_CHANS VC4080_DISPLAY_D_VALUE, VC4080_DISPLAY_Q_VALUE, #endif VC4080_CHANNEL_COUNT, }; extern SR_PRIV const char *vc4080_channel_formats[VC4080_CHANNEL_COUNT]; SR_PRIV int vc4080_config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg); SR_PRIV int vc4080_packet_request(struct sr_serial_dev_inst *serial); SR_PRIV gboolean vc4080_packet_valid(const uint8_t *pkt); SR_PRIV int vc4080_packet_parse(const uint8_t *pkt, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/ut372.c -----------------------------------------------------------*/ #define UT372_PACKET_SIZE 27 struct ut372_info { int dummy; }; SR_PRIV gboolean sr_ut372_packet_valid(const uint8_t *buf); SR_PRIV int sr_ut372_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/asycii.c ----------------------------------------------------------*/ #define ASYCII_PACKET_SIZE 16 struct asycii_info { gboolean is_ac, is_dc, is_ac_and_dc; gboolean is_resistance, is_capacitance, is_diode, is_gain; gboolean is_frequency, is_duty_cycle, is_duty_pos, is_duty_neg; gboolean is_pulse_width, is_period_pos, is_period_neg; gboolean is_pulse_count, is_count_pos, is_count_neg; gboolean is_ampere, is_volt, is_volt_ampere, is_farad, is_ohm; gboolean is_hertz, is_percent, is_seconds, is_decibel; gboolean is_pico, is_nano, is_micro, is_milli, is_kilo, is_mega; gboolean is_unitless; gboolean is_peak_min, is_peak_max; gboolean is_invalid; }; #ifdef HAVE_SERIAL_COMM SR_PRIV int sr_asycii_packet_request(struct sr_serial_dev_inst *serial); #endif SR_PRIV gboolean sr_asycii_packet_valid(const uint8_t *buf); SR_PRIV int sr_asycii_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- dmm/eev121gw.c --------------------------------------------------------*/ #define EEV121GW_PACKET_SIZE 19 enum eev121gw_display { EEV121GW_DISPLAY_MAIN, EEV121GW_DISPLAY_SUB, EEV121GW_DISPLAY_BAR, EEV121GW_DISPLAY_COUNT, }; struct eev121gw_info { /* Selected channel. */ size_t ch_idx; /* * Measured value, number and sign/overflow flags, scale factor * and significant digits. */ uint32_t uint_value; gboolean is_ofl, is_neg; int factor, digits; /* Currently active mode (meter's function). */ gboolean is_ac, is_dc, is_voltage, is_current, is_power, is_gain; gboolean is_resistance, is_capacitance, is_diode, is_temperature; gboolean is_continuity, is_frequency, is_period, is_duty_cycle; /* Quantities associated with mode/function. */ gboolean is_ampere, is_volt, is_volt_ampere, is_dbm; gboolean is_ohm, is_farad, is_celsius, is_fahrenheit; gboolean is_hertz, is_seconds, is_percent, is_loop_current; gboolean is_unitless, is_logic; /* Other indicators. */ gboolean is_min, is_max, is_avg, is_1ms_peak, is_rel, is_hold; gboolean is_low_pass, is_mem, is_bt, is_auto_range, is_test; gboolean is_auto_poweroff, is_low_batt; }; extern SR_PRIV const char *eev121gw_channel_formats[]; SR_PRIV gboolean sr_eev121gw_packet_valid(const uint8_t *buf); SR_PRIV int sr_eev121gw_3displays_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- scale/kern.c ----------------------------------------------------------*/ struct kern_info { gboolean is_gram, is_carat, is_ounce, is_pound, is_troy_ounce; gboolean is_pennyweight, is_grain, is_tael, is_momme, is_tola; gboolean is_percentage, is_piece, is_unstable, is_stable, is_error; int buflen; }; SR_PRIV gboolean sr_kern_packet_valid(const uint8_t *buf); SR_PRIV int sr_kern_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info); /*--- sw_limits.c -----------------------------------------------------------*/ struct sr_sw_limits { uint64_t limit_samples; uint64_t limit_frames; uint64_t limit_msec; uint64_t samples_read; uint64_t frames_read; uint64_t start_time; }; SR_PRIV int sr_sw_limits_config_get(struct sr_sw_limits *limits, uint32_t key, GVariant **data); SR_PRIV int sr_sw_limits_config_set(struct sr_sw_limits *limits, uint32_t key, GVariant *data); SR_PRIV void sr_sw_limits_acquisition_start(struct sr_sw_limits *limits); SR_PRIV gboolean sr_sw_limits_check(struct sr_sw_limits *limits); SR_PRIV void sr_sw_limits_update_samples_read(struct sr_sw_limits *limits, uint64_t samples_read); SR_PRIV void sr_sw_limits_update_frames_read(struct sr_sw_limits *limits, uint64_t frames_read); SR_PRIV void sr_sw_limits_init(struct sr_sw_limits *limits); #endif