/* * This file is part of the sigrok project. * * Copyright (C) 2011-2012 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "libsigrok.h" #include "libsigrok-internal.h" #include "driver.h" /* Probes are numbered 0-7. */ SR_PRIV const char *probe_names[NUM_PROBES + 1] = { "0", "1", "2", "3", "4", "5", "6", "7", NULL, }; /* This will be initialized via hw_info_get()/SR_DI_SAMPLERATES. */ SR_PRIV uint64_t supported_samplerates[255 + 1] = { 0 }; /* * Min: 1 sample per 0.01us -> sample time is 0.084s, samplerate 100MHz * Max: 1 sample per 2.55us -> sample time is 21.391s, samplerate 392.15kHz */ const struct sr_samplerates samplerates = { .low = 0, .high = 0, .step = 0, .list = supported_samplerates, }; /* Note: Continuous sampling is not supported by the hardware. */ SR_PRIV const int hwcaps[] = { SR_HWCAP_LOGIC_ANALYZER, SR_HWCAP_SAMPLERATE, SR_HWCAP_LIMIT_MSEC, /* TODO: Not yet implemented. */ SR_HWCAP_LIMIT_SAMPLES, /* TODO: Not yet implemented. */ 0, }; SR_PRIV void fill_supported_samplerates_if_needed(void) { int i; /* Do nothing if supported_samplerates[] is already filled. */ if (supported_samplerates[0] != 0) return; /* Fill supported_samplerates[] with the proper values. */ for (i = 0; i < 255; i++) supported_samplerates[254 - i] = SR_MHZ(100) / (i + 1); supported_samplerates[255] = 0; } /** * Check if the given samplerate is supported by the LA8 hardware. * * @param samplerate The samplerate (in Hz) to check. * @return 1 if the samplerate is supported/valid, 0 otherwise. */ SR_PRIV int is_valid_samplerate(uint64_t samplerate) { int i; fill_supported_samplerates_if_needed(); for (i = 0; i < 255; i++) { if (supported_samplerates[i] == samplerate) return 1; } sr_err("la8: %s: invalid samplerate (%" PRIu64 "Hz)", __func__, samplerate); return 0; } /** * Convert a samplerate (in Hz) to the 'divcount' value the LA8 wants. * * LA8 hardware: sample period = (divcount + 1) * 10ns. * Min. value for divcount: 0x00 (10ns sample period, 100MHz samplerate). * Max. value for divcount: 0xfe (2550ns sample period, 392.15kHz samplerate). * * @param samplerate The samplerate in Hz. * @return The divcount value as needed by the hardware, or 0xff upon errors. */ SR_PRIV uint8_t samplerate_to_divcount(uint64_t samplerate) { if (samplerate == 0) { sr_err("la8: %s: samplerate was 0", __func__); return 0xff; } if (!is_valid_samplerate(samplerate)) { sr_err("la8: %s: can't get divcount, samplerate invalid", __func__); return 0xff; } return (SR_MHZ(100) / samplerate) - 1; } /** * Write data of a certain length to the LA8's FTDI device. * * @param ctx The struct containing private per-device-instance data. Must not * be NULL. ctx->ftdic must not be NULL either. * @param buf The buffer containing the data to write. Must not be NULL. * @param size The number of bytes to write. Must be >= 0. * @return The number of bytes written, or a negative value upon errors. */ SR_PRIV int la8_write(struct context *ctx, uint8_t *buf, int size) { int bytes_written; /* Note: Caller checked that ctx and ctx->ftdic != NULL. */ if (!buf) { sr_err("la8: %s: buf was NULL", __func__); return SR_ERR_ARG; } if (size < 0) { sr_err("la8: %s: size was < 0", __func__); return SR_ERR_ARG; } bytes_written = ftdi_write_data(ctx->ftdic, buf, size); if (bytes_written < 0) { sr_err("la8: %s: ftdi_write_data: (%d) %s", __func__, bytes_written, ftdi_get_error_string(ctx->ftdic)); (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ } else if (bytes_written != size) { sr_err("la8: %s: bytes to write: %d, bytes written: %d", __func__, size, bytes_written); (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ } return bytes_written; } /** * Read a certain amount of bytes from the LA8's FTDI device. * * @param ctx The struct containing private per-device-instance data. Must not * be NULL. ctx->ftdic must not be NULL either. * @param buf The buffer where the received data will be stored. Must not * be NULL. * @param size The number of bytes to read. Must be >= 1. * @return The number of bytes read, or a negative value upon errors. */ SR_PRIV int la8_read(struct context *ctx, uint8_t *buf, int size) { int bytes_read; /* Note: Caller checked that ctx and ctx->ftdic != NULL. */ if (!buf) { sr_err("la8: %s: buf was NULL", __func__); return SR_ERR_ARG; } if (size <= 0) { sr_err("la8: %s: size was <= 0", __func__); return SR_ERR_ARG; } bytes_read = ftdi_read_data(ctx->ftdic, buf, size); if (bytes_read < 0) { sr_err("la8: %s: ftdi_read_data: (%d) %s", __func__, bytes_read, ftdi_get_error_string(ctx->ftdic)); } else if (bytes_read != size) { // sr_err("la8: %s: bytes to read: %d, bytes read: %d", // __func__, size, bytes_read); } return bytes_read; } SR_PRIV int la8_close(struct context *ctx) { int ret; if (!ctx) { sr_err("la8: %s: ctx was NULL", __func__); return SR_ERR_ARG; } if (!ctx->ftdic) { sr_err("la8: %s: ctx->ftdic was NULL", __func__); return SR_ERR_ARG; } if ((ret = ftdi_usb_close(ctx->ftdic)) < 0) { sr_err("la8: %s: ftdi_usb_close: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); } return ret; } /** * Close the ChronoVu LA8 USB port and reset the LA8 sequencer logic. * * @param ctx The struct containing private per-device-instance data. * @return SR_OK upon success, SR_ERR_ARG upon invalid arguments. */ SR_PRIV int la8_close_usb_reset_sequencer(struct context *ctx) { /* Magic sequence of bytes for resetting the LA8 sequencer logic. */ uint8_t buf[8] = {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01}; int ret; if (!ctx) { sr_err("la8: %s: ctx was NULL", __func__); return SR_ERR_ARG; } if (!ctx->ftdic) { sr_err("la8: %s: ctx->ftdic was NULL", __func__); return SR_ERR_ARG; } if (ctx->ftdic->usb_dev) { /* Reset the LA8 sequencer logic, then wait 100ms. */ sr_dbg("la8: Resetting sequencer logic."); (void) la8_write(ctx, buf, 8); /* Ignore errors. */ g_usleep(100 * 1000); /* Purge FTDI buffers, then reset and close the FTDI device. */ sr_dbg("la8: Purging buffers, resetting+closing FTDI device."); /* Log errors, but ignore them (i.e., don't abort). */ if ((ret = ftdi_usb_purge_buffers(ctx->ftdic)) < 0) sr_err("la8: %s: ftdi_usb_purge_buffers: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); if ((ret = ftdi_usb_reset(ctx->ftdic)) < 0) sr_err("la8: %s: ftdi_usb_reset: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); if ((ret = ftdi_usb_close(ctx->ftdic)) < 0) sr_err("la8: %s: ftdi_usb_close: (%d) %s", __func__, ret, ftdi_get_error_string(ctx->ftdic)); } /* Close USB device, deinitialize and free the FTDI context. */ ftdi_free(ctx->ftdic); /* Returns void. */ ctx->ftdic = NULL; return SR_OK; } /** * Reset the ChronoVu LA8. * * The LA8 must be reset after a failed read/write operation or upon timeouts. * * @param ctx The struct containing private per-device-instance data. * @return SR_OK upon success, SR_ERR upon failure. */ SR_PRIV int la8_reset(struct context *ctx) { uint8_t buf[BS]; time_t done, now; int bytes_read; if (!ctx) { sr_err("la8: %s: ctx was NULL", __func__); return SR_ERR_ARG; } if (!ctx->ftdic) { sr_err("la8: %s: ctx->ftdic was NULL", __func__); return SR_ERR_ARG; } sr_dbg("la8: Resetting the device."); /* * Purge pending read data from the FTDI hardware FIFO until * no more data is left, or a timeout occurs (after 20s). */ done = 20 + time(NULL); do { /* TODO: Ignore errors? Check for < 0 at least! */ bytes_read = la8_read(ctx, (uint8_t *)&buf, BS); now = time(NULL); } while ((done > now) && (bytes_read > 0)); /* Reset the LA8 sequencer logic and close the USB port. */ (void) la8_close_usb_reset_sequencer(ctx); /* Ignore errors. */ sr_dbg("la8: Device reset finished."); return SR_OK; } SR_PRIV int configure_probes(struct context *ctx, const GSList *probes) { const struct sr_probe *probe; const GSList *l; uint8_t probe_bit; char *tc; /* Note: Caller checked that ctx != NULL. */ ctx->trigger_pattern = 0; ctx->trigger_mask = 0; /* Default to "don't care" for all probes. */ for (l = probes; l; l = l->next) { probe = (struct sr_probe *)l->data; if (!probe) { sr_err("la8: %s: probe was NULL", __func__); return SR_ERR; } /* Skip disabled probes. */ if (!probe->enabled) continue; /* Skip (enabled) probes with no configured trigger. */ if (!probe->trigger) continue; /* Note: Must only be run if probe->trigger != NULL. */ if (probe->index < 0 || probe->index > 7) { sr_err("la8: %s: invalid probe index %d, must be " "between 0 and 7", __func__, probe->index); return SR_ERR; } probe_bit = (1 << (probe->index - 1)); /* Configure the probe's trigger mask and trigger pattern. */ for (tc = probe->trigger; tc && *tc; tc++) { ctx->trigger_mask |= probe_bit; /* Sanity check, LA8 only supports low/high trigger. */ if (*tc != '0' && *tc != '1') { sr_err("la8: %s: invalid trigger '%c', only " "'0'/'1' supported", __func__, *tc); return SR_ERR; } if (*tc == '1') ctx->trigger_pattern |= probe_bit; } } sr_dbg("la8: trigger_mask = 0x%x, trigger_pattern = 0x%x", ctx->trigger_mask, ctx->trigger_pattern); return SR_OK; } SR_PRIV int set_samplerate(struct sr_dev_inst *sdi, uint64_t samplerate) { struct context *ctx; /* Note: Caller checked that sdi and sdi->priv != NULL. */ ctx = sdi->priv; sr_spew("la8: Trying to set samplerate to %" PRIu64 "Hz.", samplerate); fill_supported_samplerates_if_needed(); /* Check if this is a samplerate supported by the hardware. */ if (!is_valid_samplerate(samplerate)) return SR_ERR; /* Set the new samplerate. */ ctx->cur_samplerate = samplerate; sr_dbg("la8: Samplerate set to %" PRIu64 "Hz.", ctx->cur_samplerate); return SR_OK; } /** * Get a block of data from the LA8. * * @param ctx The struct containing private per-device-instance data. Must not * be NULL. ctx->ftdic must not be NULL either. * @return SR_OK upon success, or SR_ERR upon errors. */ SR_PRIV int la8_read_block(struct context *ctx) { int i, byte_offset, m, mi, p, index, bytes_read; time_t now; /* Note: Caller checked that ctx and ctx->ftdic != NULL. */ sr_spew("la8: Reading block %d.", ctx->block_counter); bytes_read = la8_read(ctx, ctx->mangled_buf, BS); /* If first block read got 0 bytes, retry until success or timeout. */ if ((bytes_read == 0) && (ctx->block_counter == 0)) { do { sr_spew("la8: Reading block 0 (again)."); bytes_read = la8_read(ctx, ctx->mangled_buf, BS); /* TODO: How to handle read errors here? */ now = time(NULL); } while ((ctx->done > now) && (bytes_read == 0)); } /* Check if block read was successful or a timeout occured. */ if (bytes_read != BS) { sr_err("la8: Trigger timed out. Bytes read: %d.", bytes_read); (void) la8_reset(ctx); /* Ignore errors. */ return SR_ERR; } /* De-mangle the data. */ sr_spew("la8: Demangling block %d.", ctx->block_counter); byte_offset = ctx->block_counter * BS; m = byte_offset / (1024 * 1024); mi = m * (1024 * 1024); for (i = 0; i < BS; i++) { p = i & (1 << 0); index = m * 2 + (((byte_offset + i) - mi) / 2) * 16; index += (ctx->divcount == 0) ? p : (1 - p); ctx->final_buf[index] = ctx->mangled_buf[i]; } return SR_OK; } SR_PRIV void send_block_to_session_bus(struct context *ctx, int block) { int i; uint8_t sample, expected_sample; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; int trigger_point; /* Relative trigger point (in this block). */ /* Note: No sanity checks on ctx/block, caller is responsible. */ /* Check if we can find the trigger condition in this block. */ trigger_point = -1; expected_sample = ctx->trigger_pattern & ctx->trigger_mask; for (i = 0; i < BS; i++) { /* Don't continue if the trigger was found previously. */ if (ctx->trigger_found) break; /* * Also, don't continue if triggers are "don't care", i.e. if * no trigger conditions were specified by the user. In that * case we don't want to send an SR_DF_TRIGGER packet at all. */ if (ctx->trigger_mask == 0x00) break; sample = *(ctx->final_buf + (block * BS) + i); if ((sample & ctx->trigger_mask) == expected_sample) { trigger_point = i; ctx->trigger_found = 1; break; } } /* If no trigger was found, send one SR_DF_LOGIC packet. */ if (trigger_point == -1) { /* Send an SR_DF_LOGIC packet to the session bus. */ sr_spew("la8: sending SR_DF_LOGIC packet (%d bytes) for " "block %d", BS, block); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = BS; logic.unitsize = 1; logic.data = ctx->final_buf + (block * BS); sr_session_send(ctx->session_dev_id, &packet); return; } /* * We found the trigger, so some special handling is needed. We have * to send an SR_DF_LOGIC packet with the samples before the trigger * (if any), then the SD_DF_TRIGGER packet itself, then another * SR_DF_LOGIC packet with the samples after the trigger (if any). */ /* TODO: Send SR_DF_TRIGGER packet before or after the actual sample? */ /* If at least one sample is located before the trigger... */ if (trigger_point > 0) { /* Send pre-trigger SR_DF_LOGIC packet to the session bus. */ sr_spew("la8: sending pre-trigger SR_DF_LOGIC packet, " "start = %d, length = %d", block * BS, trigger_point); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = trigger_point; logic.unitsize = 1; logic.data = ctx->final_buf + (block * BS); sr_session_send(ctx->session_dev_id, &packet); } /* Send the SR_DF_TRIGGER packet to the session bus. */ sr_spew("la8: sending SR_DF_TRIGGER packet, sample = %d", (block * BS) + trigger_point); packet.type = SR_DF_TRIGGER; packet.payload = NULL; sr_session_send(ctx->session_dev_id, &packet); /* If at least one sample is located after the trigger... */ if (trigger_point < (BS - 1)) { /* Send post-trigger SR_DF_LOGIC packet to the session bus. */ sr_spew("la8: sending post-trigger SR_DF_LOGIC packet, " "start = %d, length = %d", (block * BS) + trigger_point, BS - trigger_point); packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = BS - trigger_point; logic.unitsize = 1; logic.data = ctx->final_buf + (block * BS) + trigger_point; sr_session_send(ctx->session_dev_id, &packet); } }