/* * This file is part of the libsigrok project. * * Copyright (C) 2013 Bert Vermeulen * Copyright (C) 2012 Joel Holdsworth * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "protocol.h" #include "dslogic.h" #include static const struct fx2lafw_profile supported_fx2[] = { /* * CWAV USBee AX * EE Electronics ESLA201A * ARMFLY AX-Pro */ { 0x08a9, 0x0014, "CWAV", "USBee AX", NULL, "fx2lafw-cwav-usbeeax.fw", DEV_CAPS_AX_ANALOG, NULL, NULL}, /* * CWAV USBee DX * XZL-Studio DX */ { 0x08a9, 0x0015, "CWAV", "USBee DX", NULL, "fx2lafw-cwav-usbeedx.fw", DEV_CAPS_16BIT, NULL, NULL }, /* * CWAV USBee SX */ { 0x08a9, 0x0009, "CWAV", "USBee SX", NULL, "fx2lafw-cwav-usbeesx.fw", 0, NULL, NULL}, /* DreamSourceLab DSLogic (before FW upload) */ { 0x2a0e, 0x0001, "DreamSourceLab", "DSLogic", NULL, "dreamsourcelab-dslogic-fx2.fw", DEV_CAPS_16BIT, NULL, NULL}, /* DreamSourceLab DSLogic (after FW upload) */ { 0x2a0e, 0x0001, "DreamSourceLab", "DSLogic", NULL, "dreamsourcelab-dslogic-fx2.fw", DEV_CAPS_16BIT, "DreamSourceLab", "DSLogic"}, /* DreamSourceLab DSCope (before FW upload) */ { 0x2a0e, 0x0002, "DreamSourceLab", "DSCope", NULL, "dreamsourcelab-dscope-fx2.fw", DEV_CAPS_16BIT, NULL, NULL}, /* DreamSourceLab DSCope (after FW upload) */ { 0x2a0e, 0x0002, "DreamSourceLab", "DSCope", NULL, "dreamsourcelab-dscope-fx2.fw", DEV_CAPS_16BIT, "DreamSourceLab", "DSCope"}, /* DreamSourceLab DSLogic Pro (before FW upload) */ { 0x2a0e, 0x0003, "DreamSourceLab", "DSLogic Pro", NULL, "dreamsourcelab-dslogic-pro-fx2.fw", DEV_CAPS_16BIT, NULL, NULL}, /* DreamSourceLab DSLogic Pro (after FW upload) */ { 0x2a0e, 0x0003, "DreamSourceLab", "DSLogic Pro", NULL, "dreamsourcelab-dslogic-pro-fx2.fw", DEV_CAPS_16BIT, "DreamSourceLab", "DSLogic"}, /* * Saleae Logic * EE Electronics ESLA100 * Robomotic MiniLogic * Robomotic BugLogic 3 */ { 0x0925, 0x3881, "Saleae", "Logic", NULL, "fx2lafw-saleae-logic.fw", 0, NULL, NULL}, /* * Default Cypress FX2 without EEPROM, e.g.: * Lcsoft Mini Board * Braintechnology USB Interface V2.x */ { 0x04B4, 0x8613, "Cypress", "FX2", NULL, "fx2lafw-cypress-fx2.fw", DEV_CAPS_16BIT, NULL, NULL }, /* * Braintechnology USB-LPS */ { 0x16d0, 0x0498, "Braintechnology", "USB-LPS", NULL, "fx2lafw-braintechnology-usb-lps.fw", DEV_CAPS_16BIT, NULL, NULL }, /* * sigrok FX2 based 8-channel logic analyzer */ { 0x1d50, 0x608c, "sigrok", "FX2 LA (8ch)", NULL, "fx2lafw-sigrok-fx2-8ch.fw", 0, NULL, NULL}, /* * sigrok FX2 based 16-channel logic analyzer */ { 0x1d50, 0x608d, "sigrok", "FX2 LA (16ch)", NULL, "fx2lafw-sigrok-fx2-16ch.fw", DEV_CAPS_16BIT, NULL, NULL }, ALL_ZERO }; static const uint32_t drvopts[] = { SR_CONF_LOGIC_ANALYZER, }; static const uint32_t scanopts[] = { SR_CONF_CONN, }; static const uint32_t devopts[] = { SR_CONF_CONTINUOUS, SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET, SR_CONF_CONN | SR_CONF_GET, SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_TRIGGER_MATCH | SR_CONF_LIST, SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET, }; static const uint32_t dslogic_devopts[] = { SR_CONF_CONTINUOUS | SR_CONF_SET | SR_CONF_GET, SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET, SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_CONN | SR_CONF_GET, SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_TRIGGER_MATCH | SR_CONF_LIST, SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET, SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET, SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST }; static const int32_t soft_trigger_matches[] = { SR_TRIGGER_ZERO, SR_TRIGGER_ONE, SR_TRIGGER_RISING, SR_TRIGGER_FALLING, SR_TRIGGER_EDGE, }; /* Names assigned to available edge slope choices. */ static const char *const signal_edge_names[] = { [DS_EDGE_RISING] = "rising", [DS_EDGE_FALLING] = "falling", }; static const struct { int range; gdouble low; gdouble high; } volt_thresholds[] = { { DS_VOLTAGE_RANGE_18_33_V, 0.7, 1.4 }, { DS_VOLTAGE_RANGE_5_V, 1.4, 3.6 }, }; static const uint64_t samplerates[] = { SR_KHZ(20), SR_KHZ(25), SR_KHZ(50), SR_KHZ(100), SR_KHZ(200), SR_KHZ(250), SR_KHZ(500), SR_MHZ(1), SR_MHZ(2), SR_MHZ(3), SR_MHZ(4), SR_MHZ(6), SR_MHZ(8), SR_MHZ(12), SR_MHZ(16), SR_MHZ(24), }; static const uint64_t dslogic_samplerates[] = { SR_KHZ(10), SR_KHZ(20), SR_KHZ(50), SR_KHZ(100), SR_KHZ(200), SR_KHZ(500), SR_MHZ(1), SR_MHZ(2), SR_MHZ(5), SR_MHZ(10), SR_MHZ(20), SR_MHZ(25), SR_MHZ(50), SR_MHZ(100), SR_MHZ(200), SR_MHZ(400), }; SR_PRIV struct sr_dev_driver fx2lafw_driver_info; static GSList *scan(struct sr_dev_driver *di, GSList *options) { struct drv_context *drvc; struct dev_context *devc; struct sr_dev_inst *sdi; struct sr_usb_dev_inst *usb; struct sr_channel *ch; struct sr_channel_group *cg; struct sr_config *src; const struct fx2lafw_profile *prof; GSList *l, *devices, *conn_devices; gboolean has_firmware; struct libusb_device_descriptor des; libusb_device **devlist; struct libusb_device_handle *hdl; int ret, i, j; int num_logic_channels = 0, num_analog_channels = 0; const char *conn; char manufacturer[64], product[64], serial_num[64], connection_id[64]; char channel_name[16]; drvc = di->context; conn = NULL; for (l = options; l; l = l->next) { src = l->data; switch (src->key) { case SR_CONF_CONN: conn = g_variant_get_string(src->data, NULL); break; } } if (conn) conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn); else conn_devices = NULL; /* Find all fx2lafw compatible devices and upload firmware to them. */ devices = NULL; libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); for (i = 0; devlist[i]; i++) { if (conn) { usb = NULL; for (l = conn_devices; l; l = l->next) { usb = l->data; if (usb->bus == libusb_get_bus_number(devlist[i]) && usb->address == libusb_get_device_address(devlist[i])) break; } if (!l) /* This device matched none of the ones that * matched the conn specification. */ continue; } libusb_get_device_descriptor( devlist[i], &des); if ((ret = libusb_open(devlist[i], &hdl)) < 0) continue; if (des.iManufacturer == 0) { manufacturer[0] = '\0'; } else if ((ret = libusb_get_string_descriptor_ascii(hdl, des.iManufacturer, (unsigned char *) manufacturer, sizeof(manufacturer))) < 0) { sr_warn("Failed to get manufacturer string descriptor: %s.", libusb_error_name(ret)); continue; } if (des.iProduct == 0) { product[0] = '\0'; } else if ((ret = libusb_get_string_descriptor_ascii(hdl, des.iProduct, (unsigned char *) product, sizeof(product))) < 0) { sr_warn("Failed to get product string descriptor: %s.", libusb_error_name(ret)); continue; } if (des.iSerialNumber == 0) { serial_num[0] = '\0'; } else if ((ret = libusb_get_string_descriptor_ascii(hdl, des.iSerialNumber, (unsigned char *) serial_num, sizeof(serial_num))) < 0) { sr_warn("Failed to get serial number string descriptor: %s.", libusb_error_name(ret)); continue; } usb_get_port_path(devlist[i], connection_id, sizeof(connection_id)); libusb_close(hdl); prof = NULL; for (j = 0; supported_fx2[j].vid; j++) { if (des.idVendor == supported_fx2[j].vid && des.idProduct == supported_fx2[j].pid && (!supported_fx2[j].usb_manufacturer || !strcmp(manufacturer, supported_fx2[j].usb_manufacturer)) && (!supported_fx2[j].usb_manufacturer || !strcmp(product, supported_fx2[j].usb_product))) { prof = &supported_fx2[j]; break; } } /* Skip if the device was not found. */ if (!prof) continue; sdi = g_malloc0(sizeof(struct sr_dev_inst)); sdi->status = SR_ST_INITIALIZING; sdi->vendor = g_strdup(prof->vendor); sdi->model = g_strdup(prof->model); sdi->version = g_strdup(prof->model_version); sdi->driver = di; sdi->serial_num = g_strdup(serial_num); sdi->connection_id = g_strdup(connection_id); /* Fill in channellist according to this device's profile. */ num_logic_channels = prof->dev_caps & DEV_CAPS_16BIT ? 16 : 8; num_analog_channels = prof->dev_caps & DEV_CAPS_AX_ANALOG ? 1 : 0; /* Logic channels, all in one channel group. */ cg = g_malloc0(sizeof(struct sr_channel_group)); cg->name = g_strdup("Logic"); for (j = 0; j < num_logic_channels; j++) { sprintf(channel_name, "D%d", j); ch = sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE, channel_name); cg->channels = g_slist_append(cg->channels, ch); } sdi->channel_groups = g_slist_append(NULL, cg); for (j = 0; j < num_analog_channels; j++) { snprintf(channel_name, 16, "A%d", j); ch = sr_channel_new(sdi, j + num_logic_channels, SR_CHANNEL_ANALOG, TRUE, channel_name); /* Every analog channel gets its own channel group. */ cg = g_malloc0(sizeof(struct sr_channel_group)); cg->name = g_strdup(channel_name); cg->channels = g_slist_append(NULL, ch); sdi->channel_groups = g_slist_append(sdi->channel_groups, cg); } devc = fx2lafw_dev_new(); devc->profile = prof; if ((prof->dev_caps & DEV_CAPS_16BIT) || (prof->dev_caps & DEV_CAPS_AX_ANALOG)) devc->sample_wide = TRUE; sdi->priv = devc; drvc->instances = g_slist_append(drvc->instances, sdi); devices = g_slist_append(devices, sdi); if (!strcmp(prof->model, "DSLogic") || !strcmp(prof->model, "DSLogic Pro") || !strcmp(prof->model, "DSCope")) { devc->dslogic = TRUE; devc->samplerates = dslogic_samplerates; devc->num_samplerates = ARRAY_SIZE(dslogic_samplerates); has_firmware = match_manuf_prod(devlist[i], "DreamSourceLab", "DSLogic") || match_manuf_prod(devlist[i], "DreamSourceLab", "DSCope"); } else { devc->dslogic = FALSE; devc->samplerates = samplerates; devc->num_samplerates = ARRAY_SIZE(samplerates); has_firmware = match_manuf_prod(devlist[i], "sigrok", "fx2lafw"); } if (has_firmware) { /* Already has the firmware, so fix the new address. */ sr_dbg("Found an fx2lafw device."); sdi->status = SR_ST_INACTIVE; sdi->inst_type = SR_INST_USB; sdi->conn = sr_usb_dev_inst_new(libusb_get_bus_number(devlist[i]), libusb_get_device_address(devlist[i]), NULL); } else { if (ezusb_upload_firmware(drvc->sr_ctx, devlist[i], USB_CONFIGURATION, prof->firmware) == SR_OK) /* Store when this device's FW was updated. */ devc->fw_updated = g_get_monotonic_time(); else sr_err("Firmware upload failed for " "device %d.%d (logical).", libusb_get_bus_number(devlist[i]), libusb_get_device_address(devlist[i])); sdi->inst_type = SR_INST_USB; sdi->conn = sr_usb_dev_inst_new(libusb_get_bus_number(devlist[i]), 0xff, NULL); } } libusb_free_device_list(devlist, 1); g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free); return devices; } static void clear_dev_context(void *priv) { struct dev_context *devc; devc = priv; g_slist_free(devc->enabled_analog_channels); g_free(devc); } static int dev_clear(const struct sr_dev_driver *di) { return std_dev_clear(di, clear_dev_context); } static int dev_open(struct sr_dev_inst *sdi) { struct sr_dev_driver *di = sdi->driver; struct sr_usb_dev_inst *usb; struct dev_context *devc; const char *fpga_firmware = NULL; int ret; int64_t timediff_us, timediff_ms; devc = sdi->priv; usb = sdi->conn; /* * If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS * milliseconds for the FX2 to renumerate. */ ret = SR_ERR; if (devc->fw_updated > 0) { sr_info("Waiting for device to reset."); /* Takes >= 300ms for the FX2 to be gone from the USB bus. */ g_usleep(300 * 1000); timediff_ms = 0; while (timediff_ms < MAX_RENUM_DELAY_MS) { if ((ret = fx2lafw_dev_open(sdi, di)) == SR_OK) break; g_usleep(100 * 1000); timediff_us = g_get_monotonic_time() - devc->fw_updated; timediff_ms = timediff_us / 1000; sr_spew("Waited %" PRIi64 "ms.", timediff_ms); } if (ret != SR_OK) { sr_err("Device failed to renumerate."); return SR_ERR; } sr_info("Device came back after %" PRIi64 "ms.", timediff_ms); } else { sr_info("Firmware upload was not needed."); ret = fx2lafw_dev_open(sdi, di); } if (ret != SR_OK) { sr_err("Unable to open device."); return SR_ERR; } ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE); if (ret != 0) { switch (ret) { case LIBUSB_ERROR_BUSY: sr_err("Unable to claim USB interface. Another " "program or driver has already claimed it."); break; case LIBUSB_ERROR_NO_DEVICE: sr_err("Device has been disconnected."); break; default: sr_err("Unable to claim interface: %s.", libusb_error_name(ret)); break; } return SR_ERR; } if (devc->dslogic) { if (!strcmp(devc->profile->model, "DSLogic")) { if (devc->dslogic_voltage_threshold == DS_VOLTAGE_RANGE_18_33_V) fpga_firmware = DSLOGIC_FPGA_FIRMWARE_3V3; else fpga_firmware = DSLOGIC_FPGA_FIRMWARE_5V; } else if (!strcmp(devc->profile->model, "DSLogic Pro")){ fpga_firmware = DSLOGIC_PRO_FPGA_FIRMWARE; } else if (!strcmp(devc->profile->model, "DSCope")) { fpga_firmware = DSCOPE_FPGA_FIRMWARE; } if ((ret = dslogic_fpga_firmware_upload(sdi, fpga_firmware)) != SR_OK) return ret; } if (devc->cur_samplerate == 0) { /* Samplerate hasn't been set; default to the slowest one. */ devc->cur_samplerate = devc->samplerates[0]; } return SR_OK; } static int dev_close(struct sr_dev_inst *sdi) { struct sr_usb_dev_inst *usb; usb = sdi->conn; if (!usb->devhdl) return SR_ERR; sr_info("fx2lafw: Closing device on %d.%d (logical) / %s (physical) interface %d.", usb->bus, usb->address, sdi->connection_id, USB_INTERFACE); libusb_release_interface(usb->devhdl, USB_INTERFACE); libusb_close(usb->devhdl); usb->devhdl = NULL; sdi->status = SR_ST_INACTIVE; return SR_OK; } static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; struct sr_usb_dev_inst *usb; GVariant *range[2]; unsigned int i; char str[128]; (void)cg; if (!sdi) return SR_ERR_ARG; devc = sdi->priv; switch (key) { case SR_CONF_CONN: if (!sdi->conn) return SR_ERR_ARG; usb = sdi->conn; if (usb->address == 255) /* Device still needs to re-enumerate after firmware * upload, so we don't know its (future) address. */ return SR_ERR; snprintf(str, 128, "%d.%d", usb->bus, usb->address); *data = g_variant_new_string(str); break; case SR_CONF_VOLTAGE_THRESHOLD: for (i = 0; i < ARRAY_SIZE(volt_thresholds); i++) { if (volt_thresholds[i].range != devc->dslogic_voltage_threshold) continue; range[0] = g_variant_new_double(volt_thresholds[i].low); range[1] = g_variant_new_double(volt_thresholds[i].high); *data = g_variant_new_tuple(range, 2); break; } break; case SR_CONF_LIMIT_SAMPLES: *data = g_variant_new_uint64(devc->limit_samples); break; case SR_CONF_SAMPLERATE: *data = g_variant_new_uint64(devc->cur_samplerate); break; case SR_CONF_CAPTURE_RATIO: *data = g_variant_new_uint64(devc->capture_ratio); break; case SR_CONF_EXTERNAL_CLOCK: *data = g_variant_new_boolean(devc->dslogic_external_clock); break; case SR_CONF_CONTINUOUS: *data = g_variant_new_boolean(devc->dslogic_continuous_mode); break; case SR_CONF_CLOCK_EDGE: i = devc->dslogic_clock_edge; if (i >= ARRAY_SIZE(signal_edge_names)) return SR_ERR_BUG; *data = g_variant_new_string(signal_edge_names[0]);//idx]); break; default: return SR_ERR_NA; } return SR_OK; } /* Helper for mapping a string-typed configuration value to an index * within a table of possible values. */ static int lookup_index(GVariant *value, const char *const *table, int len) { const char *entry; int i; entry = g_variant_get_string(value, NULL); if (!entry) return -1; /* Linear search is fine for very small tables. */ for (i = 0; i < len; i++) { if (strcmp(entry, table[i]) == 0) return i; } return -1; } static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; uint64_t arg; int i, ret; gdouble low, high; (void)cg; if (!sdi) return SR_ERR_ARG; if (sdi->status != SR_ST_ACTIVE) return SR_ERR; devc = sdi->priv; ret = SR_OK; switch (key) { case SR_CONF_SAMPLERATE: arg = g_variant_get_uint64(data); for (i = 0; i < devc->num_samplerates; i++) { if (devc->samplerates[i] == arg) { devc->cur_samplerate = arg; break; } } if (i == devc->num_samplerates) ret = SR_ERR_ARG; break; case SR_CONF_LIMIT_SAMPLES: devc->limit_samples = g_variant_get_uint64(data); break; case SR_CONF_CAPTURE_RATIO: devc->capture_ratio = g_variant_get_uint64(data); ret = (devc->capture_ratio > 100) ? SR_ERR : SR_OK; break; case SR_CONF_VOLTAGE_THRESHOLD: g_variant_get(data, "(dd)", &low, &high); ret = SR_ERR_ARG; for (i = 0; (unsigned int)i < ARRAY_SIZE(volt_thresholds); i++) { if (fabs(volt_thresholds[i].low - low) < 0.1 && fabs(volt_thresholds[i].high - high) < 0.1) { devc->dslogic_voltage_threshold = volt_thresholds[i].range; break; } } if (!strcmp(devc->profile->model, "DSLogic")) { if (devc->dslogic_voltage_threshold == DS_VOLTAGE_RANGE_5_V) ret = dslogic_fpga_firmware_upload(sdi, DSLOGIC_FPGA_FIRMWARE_5V); else ret = dslogic_fpga_firmware_upload(sdi, DSLOGIC_FPGA_FIRMWARE_3V3); }else if (!strcmp(devc->profile->model, "DSLogic Pro")){ ret = dslogic_fpga_firmware_upload(sdi, DSLOGIC_PRO_FPGA_FIRMWARE); } break; case SR_CONF_EXTERNAL_CLOCK: devc->dslogic_external_clock = g_variant_get_boolean(data); break; case SR_CONF_CONTINUOUS: devc->dslogic_continuous_mode = g_variant_get_boolean(data); break; case SR_CONF_CLOCK_EDGE: i = lookup_index(data, signal_edge_names, ARRAY_SIZE(signal_edge_names)); if (i < 0) return SR_ERR_ARG; devc->dslogic_clock_edge = i; break; default: ret = SR_ERR_NA; } return ret; } static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; GVariant *gvar, *range[2]; GVariantBuilder gvb; unsigned int i; (void)cg; switch (key) { case SR_CONF_SCAN_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t)); break; case SR_CONF_DEVICE_OPTIONS: if (!sdi) *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t)); else{ devc = sdi->priv; if (!devc->dslogic) *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, devopts, ARRAY_SIZE(devopts), sizeof(uint32_t)); else *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, dslogic_devopts, ARRAY_SIZE(dslogic_devopts), sizeof(uint32_t)); } break; case SR_CONF_VOLTAGE_THRESHOLD: if (!sdi->priv) return SR_ERR_ARG; devc = sdi->priv; if (!devc->dslogic) return SR_ERR_NA; g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY); for (i = 0; i < ARRAY_SIZE(volt_thresholds); i++) { range[0] = g_variant_new_double(volt_thresholds[i].low); range[1] = g_variant_new_double(volt_thresholds[i].high); gvar = g_variant_new_tuple(range, 2); g_variant_builder_add_value(&gvb, gvar); } *data = g_variant_builder_end(&gvb); break; case SR_CONF_SAMPLERATE: if (!sdi->priv) return SR_ERR_ARG; devc = sdi->priv; g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), devc->samplerates, devc->num_samplerates, sizeof(uint64_t)); g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_TRIGGER_MATCH: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, soft_trigger_matches, ARRAY_SIZE(soft_trigger_matches), sizeof(int32_t)); break; case SR_CONF_CLOCK_EDGE: *data = g_variant_new_strv(signal_edge_names, ARRAY_SIZE(signal_edge_names)); break; default: return SR_ERR_NA; } return SR_OK; } static int receive_data(int fd, int revents, void *cb_data) { struct timeval tv; struct drv_context *drvc; (void)fd; (void)revents; drvc = (struct drv_context *)cb_data; tv.tv_sec = tv.tv_usec = 0; libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv); return TRUE; } static int start_transfers(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_usb_dev_inst *usb; struct sr_trigger *trigger; struct libusb_transfer *transfer; unsigned int i, num_transfers; int endpoint, timeout, ret; unsigned char *buf; size_t size; devc = sdi->priv; usb = sdi->conn; devc->sent_samples = 0; devc->acq_aborted = FALSE; devc->empty_transfer_count = 0; if ((trigger = sr_session_trigger_get(sdi->session)) && !devc->dslogic) { int pre_trigger_samples = 0; if (devc->limit_samples > 0) pre_trigger_samples = devc->capture_ratio * devc->limit_samples/100; devc->stl = soft_trigger_logic_new(sdi, trigger, pre_trigger_samples); if (!devc->stl) return SR_ERR_MALLOC; devc->trigger_fired = FALSE; } else devc->trigger_fired = TRUE; num_transfers = fx2lafw_get_number_of_transfers(devc); //if (devc->dslogic) // num_transfers = dslogic_get_number_of_transfers(devc); if ( devc->dslogic){ if(devc->cur_samplerate == SR_MHZ(100)) num_transfers = 16; else if (devc->cur_samplerate == SR_MHZ(200)) num_transfers = 8; else if (devc->cur_samplerate == SR_MHZ(400)) num_transfers = 4; } size = fx2lafw_get_buffer_size(devc); devc->submitted_transfers = 0; devc->transfers = g_try_malloc0(sizeof(*devc->transfers) * num_transfers); if (!devc->transfers) { sr_err("USB transfers malloc failed."); return SR_ERR_MALLOC; } timeout = fx2lafw_get_timeout(devc); endpoint = devc->dslogic ? 6 : 2; devc->num_transfers = num_transfers; for (i = 0; i < num_transfers; i++) { if (!(buf = g_try_malloc(size))) { sr_err("USB transfer buffer malloc failed."); return SR_ERR_MALLOC; } transfer = libusb_alloc_transfer(0); libusb_fill_bulk_transfer(transfer, usb->devhdl, endpoint | LIBUSB_ENDPOINT_IN, buf, size, fx2lafw_receive_transfer, (void *)sdi, timeout); sr_info("submitting transfer: %d", i); if ((ret = libusb_submit_transfer(transfer)) != 0) { sr_err("Failed to submit transfer: %s.", libusb_error_name(ret)); libusb_free_transfer(transfer); g_free(buf); fx2lafw_abort_acquisition(devc); return SR_ERR; } devc->transfers[i] = transfer; devc->submitted_transfers++; } if (devc->profile->dev_caps & DEV_CAPS_AX_ANALOG) devc->send_data_proc = mso_send_data_proc; else devc->send_data_proc = la_send_data_proc; std_session_send_df_header(sdi, LOG_PREFIX); return SR_OK; } static void LIBUSB_CALL dslogic_trigger_receive(struct libusb_transfer *transfer) { const struct sr_dev_inst *sdi; struct dslogic_trigger_pos *tpos; struct dev_context *devc; sdi = transfer->user_data; devc = sdi->priv; if (transfer->status == LIBUSB_TRANSFER_CANCELLED) { sr_dbg("Trigger transfer canceled."); /* Terminate session. */ std_session_send_df_end(sdi, LOG_PREFIX); usb_source_remove(sdi->session, devc->ctx); devc->num_transfers = 0; g_free(devc->transfers); if (devc->stl) { soft_trigger_logic_free(devc->stl); devc->stl = NULL; } } else if (transfer->status == LIBUSB_TRANSFER_COMPLETED && transfer->actual_length == sizeof(struct dslogic_trigger_pos)) { tpos = (struct dslogic_trigger_pos *)transfer->buffer; sr_info("tpos real_pos %d ram_saddr %d cnt %d", tpos->real_pos, tpos->ram_saddr, tpos->remain_cnt); devc->trigger_pos = tpos->real_pos; g_free(tpos); start_transfers(sdi); } libusb_free_transfer(transfer); } static int dslogic_trigger_request(const struct sr_dev_inst *sdi) { struct sr_usb_dev_inst *usb; struct libusb_transfer *transfer; struct dslogic_trigger_pos *tpos; struct dev_context *devc; int ret; usb = sdi->conn; devc = sdi->priv; if ((ret = dslogic_stop_acquisition(sdi)) != SR_OK) return ret; if ((ret = dslogic_fpga_configure(sdi)) != SR_OK) return ret; /* if this is a dslogic pro, set the voltage threshold */ if (!strcmp(devc->profile->model, "DSLogic Pro")){ if(devc->dslogic_voltage_threshold == DS_VOLTAGE_RANGE_18_33_V){ dslogic_set_vth(sdi, 1.4); }else{ dslogic_set_vth(sdi, 3.3); } } if ((ret = dslogic_start_acquisition(sdi)) != SR_OK) return ret; sr_dbg("Getting trigger."); tpos = g_malloc(sizeof(struct dslogic_trigger_pos)); transfer = libusb_alloc_transfer(0); libusb_fill_bulk_transfer(transfer, usb->devhdl, 6 | LIBUSB_ENDPOINT_IN, (unsigned char *)tpos, sizeof(struct dslogic_trigger_pos), dslogic_trigger_receive, (void *)sdi, 0); if ((ret = libusb_submit_transfer(transfer)) < 0) { sr_err("Failed to request trigger: %s.", libusb_error_name(ret)); libusb_free_transfer(transfer); g_free(tpos); return SR_ERR; } devc->transfers = g_try_malloc0(sizeof(*devc->transfers)); if (!devc->transfers) { sr_err("USB trigger_pos transfer malloc failed."); return SR_ERR_MALLOC; } devc->num_transfers = 1; devc->submitted_transfers++; devc->transfers[0] = transfer; return ret; } static int configure_channels(const struct sr_dev_inst *sdi) { struct dev_context *devc; const GSList *l; int p; struct sr_channel *ch; devc = sdi->priv; g_slist_free(devc->enabled_analog_channels); devc->enabled_analog_channels = NULL; memset(devc->ch_enabled, 0, sizeof(devc->ch_enabled)); for (l = sdi->channels, p = 0; l; l = l->next, p++) { ch = l->data; if ((p <= NUM_CHANNELS) && (ch->type == SR_CHANNEL_ANALOG)) { devc->ch_enabled[p] = ch->enabled; devc->enabled_analog_channels = g_slist_append(devc->enabled_analog_channels, ch); } } return SR_OK; } static int dev_acquisition_start(const struct sr_dev_inst *sdi) { struct sr_dev_driver *di; struct drv_context *drvc; struct dev_context *devc; int timeout, ret; size_t size; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; di = sdi->driver; drvc = di->context; devc = sdi->priv; devc->ctx = drvc->sr_ctx; devc->sent_samples = 0; devc->empty_transfer_count = 0; devc->acq_aborted = FALSE; if (configure_channels(sdi) != SR_OK) { sr_err("Failed to configure channels."); return SR_ERR; } timeout = fx2lafw_get_timeout(devc); usb_source_add(sdi->session, devc->ctx, timeout, receive_data, drvc); if (devc->dslogic) { dslogic_trigger_request(sdi); } else { size = fx2lafw_get_buffer_size(devc); /* Prepare for analog sampling. */ if (devc->profile->dev_caps & DEV_CAPS_AX_ANALOG) { /* We need a buffer half the size of a transfer. */ devc->logic_buffer = g_try_malloc(size / 2); devc->analog_buffer = g_try_malloc( sizeof(float) * size / 2); } start_transfers(sdi); if ((ret = fx2lafw_command_start_acquisition(sdi)) != SR_OK) { fx2lafw_abort_acquisition(devc); return ret; } } return SR_OK; } static int dev_acquisition_stop(struct sr_dev_inst *sdi) { struct dev_context *devc; devc = sdi->priv; if (devc->dslogic) dslogic_stop_acquisition(sdi); fx2lafw_abort_acquisition(sdi->priv); return SR_OK; } SR_PRIV struct sr_dev_driver fx2lafw_driver_info = { .name = "fx2lafw", .longname = "fx2lafw (generic driver for FX2 based LAs)", .api_version = 1, .init = std_init, .cleanup = std_cleanup, .scan = scan, .dev_list = std_dev_list, .dev_clear = dev_clear, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .context = NULL, };