/* * This file is part of the libsigrok project. * * Copyright (C) 2010 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include #include #include #include #include "libsigrok-internal.h" /** @cond PRIVATE */ #define LOG_PREFIX "strutil" /** @endcond */ /** * @file * * Helper functions for handling or converting libsigrok-related strings. */ /** * @defgroup grp_strutil String utilities * * Helper functions for handling or converting libsigrok-related strings. * * @{ */ /** * @private * * Convert a string representation of a numeric value (base 10) to a long integer. The * conversion is strict and will fail if the complete string does not represent * a valid long integer. The function sets errno according to the details of the * failure. * * @param str The string representation to convert. * @param ret Pointer to long where the result of the conversion will be stored. * * @retval SR_OK Conversion successful. * @retval SR_ERR Failure. */ SR_PRIV int sr_atol(const char *str, long *ret) { long tmp; char *endptr = NULL; errno = 0; tmp = strtol(str, &endptr, 10); while (endptr && isspace(*endptr)) endptr++; if (!endptr || *endptr || errno) { if (!errno) errno = EINVAL; return SR_ERR; } *ret = tmp; return SR_OK; } /** * @private * * Convert a string representation of a numeric value (base 10) to an integer. The * conversion is strict and will fail if the complete string does not represent * a valid integer. The function sets errno according to the details of the * failure. * * @param str The string representation to convert. * @param ret Pointer to int where the result of the conversion will be stored. * * @retval SR_OK Conversion successful. * @retval SR_ERR Failure. */ SR_PRIV int sr_atoi(const char *str, int *ret) { long tmp; if (sr_atol(str, &tmp) != SR_OK) return SR_ERR; if ((int) tmp != tmp) { errno = ERANGE; return SR_ERR; } *ret = (int) tmp; return SR_OK; } /** * @private * * Convert a string representation of a numeric value to a double. The * conversion is strict and will fail if the complete string does not represent * a valid double. The function sets errno according to the details of the * failure. * * @param str The string representation to convert. * @param ret Pointer to double where the result of the conversion will be stored. * * @retval SR_OK Conversion successful. * @retval SR_ERR Failure. */ SR_PRIV int sr_atod(const char *str, double *ret) { double tmp; char *endptr = NULL; errno = 0; tmp = strtof(str, &endptr); while (endptr && isspace(*endptr)) endptr++; if (!endptr || *endptr || errno) { if (!errno) errno = EINVAL; return SR_ERR; } *ret = tmp; return SR_OK; } /** * @private * * Convert a string representation of a numeric value to a float. The * conversion is strict and will fail if the complete string does not represent * a valid float. The function sets errno according to the details of the * failure. * * @param str The string representation to convert. * @param ret Pointer to float where the result of the conversion will be stored. * * @retval SR_OK Conversion successful. * @retval SR_ERR Failure. */ SR_PRIV int sr_atof(const char *str, float *ret) { double tmp; if (sr_atod(str, &tmp) != SR_OK) return SR_ERR; if ((float) tmp != tmp) { errno = ERANGE; return SR_ERR; } *ret = (float) tmp; return SR_OK; } /** * @private * * Convert a string representation of a numeric value to a double. The * conversion is strict and will fail if the complete string does not represent * a valid double. The function sets errno according to the details of the * failure. This version ignores the locale. * * @param str The string representation to convert. * @param ret Pointer to double where the result of the conversion will be stored. * * @retval SR_OK Conversion successful. * @retval SR_ERR Failure. */ SR_PRIV int sr_atod_ascii(const char *str, double *ret) { double tmp; char *endptr = NULL; errno = 0; tmp = g_ascii_strtod(str, &endptr); if (!endptr || *endptr || errno) { if (!errno) errno = EINVAL; return SR_ERR; } *ret = tmp; return SR_OK; } /** * @private * * Convert a string representation of a numeric value to a float. The * conversion is strict and will fail if the complete string does not represent * a valid float. The function sets errno according to the details of the * failure. This version ignores the locale. * * @param str The string representation to convert. * @param ret Pointer to float where the result of the conversion will be stored. * * @retval SR_OK Conversion successful. * @retval SR_ERR Failure. */ SR_PRIV int sr_atof_ascii(const char *str, float *ret) { double tmp; char *endptr = NULL; errno = 0; tmp = g_ascii_strtod(str, &endptr); if (!endptr || *endptr || errno) { if (!errno) errno = EINVAL; return SR_ERR; } /* FIXME This fails unexpectedly. Some other method to safel downcast * needs to be found. Checking against FLT_MAX doesn't work as well. */ /* if ((float) tmp != tmp) { errno = ERANGE; sr_dbg("ERANGEEEE %e != %e", (float) tmp, tmp); return SR_ERR; } */ *ret = (float) tmp; return SR_OK; } /** * Convert a string representation of a numeric value to a sr_rational. * * The conversion is strict and will fail if the complete string does not * represent a valid number. The function sets errno according to the details * of the failure. This version ignores the locale. * * @param str The string representation to convert. * @param ret Pointer to sr_rational where the result of the conversion will be stored. * * @retval SR_OK Conversion successful. * @retval SR_ERR Failure. * * @since 0.5.0 */ SR_API int sr_parse_rational(const char *str, struct sr_rational *ret) { char *endptr = NULL; int64_t integral; int64_t fractional = 0; int64_t denominator = 1; int32_t fractional_len = 0; int32_t exponent = 0; bool is_negative = false; errno = 0; integral = g_ascii_strtoll(str, &endptr, 10); if (str == endptr && (str[0] == '-' || str[0] == '+') && str[1] == '.') endptr += 1; else if (errno) return SR_ERR; if (integral < 0 || str[0] == '-') is_negative = true; if (*endptr == '.') { const char* start = endptr + 1; fractional = g_ascii_strtoll(start, &endptr, 10); if (errno) return SR_ERR; fractional_len = endptr - start; } if ((*endptr == 'E') || (*endptr == 'e')) { exponent = g_ascii_strtoll(endptr + 1, &endptr, 10); if (errno) return SR_ERR; } if (*endptr != '\0') return SR_ERR; for (int i = 0; i < fractional_len; i++) integral *= 10; exponent -= fractional_len; if (!is_negative) integral += fractional; else integral -= fractional; while (exponent > 0) { integral *= 10; exponent--; } while (exponent < 0) { denominator *= 10; exponent++; } ret->p = integral; ret->q = denominator; return SR_OK; } /** * Convert a numeric value value to its "natural" string representation * in SI units. * * E.g. a value of 3000000, with units set to "W", would be converted * to "3 MW", 20000 to "20 kW", 31500 would become "31.5 kW". * * @param x The value to convert. * @param unit The unit to append to the string, or NULL if the string * has no units. * * @return A newly allocated string representation of the samplerate value, * or NULL upon errors. The caller is responsible to g_free() the * memory. * * @since 0.2.0 */ SR_API char *sr_si_string_u64(uint64_t x, const char *unit) { uint8_t i; uint64_t quot, divisor[] = { SR_HZ(1), SR_KHZ(1), SR_MHZ(1), SR_GHZ(1), SR_GHZ(1000), SR_GHZ(1000 * 1000), SR_GHZ(1000 * 1000 * 1000), }; const char *p, prefix[] = "\0kMGTPE"; char fmt[16], fract[20] = "", *f; if (!unit) unit = ""; for (i = 0; (quot = x / divisor[i]) >= 1000; i++); if (i) { sprintf(fmt, ".%%0%d"PRIu64, i * 3); f = fract + sprintf(fract, fmt, x % divisor[i]) - 1; while (f >= fract && strchr("0.", *f)) *f-- = 0; } p = prefix + i; return g_strdup_printf("%" PRIu64 "%s %.1s%s", quot, fract, p, unit); } /** * Convert a numeric samplerate value to its "natural" string representation. * * E.g. a value of 3000000 would be converted to "3 MHz", 20000 to "20 kHz", * 31500 would become "31.5 kHz". * * @param samplerate The samplerate in Hz. * * @return A newly allocated string representation of the samplerate value, * or NULL upon errors. The caller is responsible to g_free() the * memory. * * @since 0.1.0 */ SR_API char *sr_samplerate_string(uint64_t samplerate) { return sr_si_string_u64(samplerate, "Hz"); } /** * Convert a numeric period value to the "natural" string representation * of its period value. * * The period is specified as a rational number's numerator and denominator. * * E.g. a pair of (1, 5) would be converted to "200 ms", (10, 100) to "100 ms". * * @param v_p The period numerator. * @param v_q The period denominator. * * @return A newly allocated string representation of the period value, * or NULL upon errors. The caller is responsible to g_free() the * memory. * * @since 0.5.0 */ SR_API char *sr_period_string(uint64_t v_p, uint64_t v_q) { double freq, v; int prec; freq = 1 / ((double)v_p / v_q); if (freq > SR_GHZ(1)) { v = (double)v_p / v_q * 1000000000000.0; prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3; return g_strdup_printf("%.*f ps", prec, v); } else if (freq > SR_MHZ(1)) { v = (double)v_p / v_q * 1000000000.0; prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3; return g_strdup_printf("%.*f ns", prec, v); } else if (freq > SR_KHZ(1)) { v = (double)v_p / v_q * 1000000.0; prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3; return g_strdup_printf("%.*f us", prec, v); } else if (freq > 1) { v = (double)v_p / v_q * 1000.0; prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3; return g_strdup_printf("%.*f ms", prec, v); } else { v = (double)v_p / v_q; prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3; return g_strdup_printf("%.*f s", prec, v); } } /** * Convert a numeric voltage value to the "natural" string representation * of its voltage value. The voltage is specified as a rational number's * numerator and denominator. * * E.g. a value of 300000 would be converted to "300mV", 2 to "2V". * * @param v_p The voltage numerator. * @param v_q The voltage denominator. * * @return A newly allocated string representation of the voltage value, * or NULL upon errors. The caller is responsible to g_free() the * memory. * * @since 0.2.0 */ SR_API char *sr_voltage_string(uint64_t v_p, uint64_t v_q) { if (v_q == 1000) return g_strdup_printf("%" PRIu64 " mV", v_p); else if (v_q == 1) return g_strdup_printf("%" PRIu64 " V", v_p); else return g_strdup_printf("%g V", (float)v_p / (float)v_q); } /** * Convert a "natural" string representation of a size value to uint64_t. * * E.g. a value of "3k" or "3 K" would be converted to 3000, a value * of "15M" would be converted to 15000000. * * Value representations other than decimal (such as hex or octal) are not * supported. Only 'k' (kilo), 'm' (mega), 'g' (giga) suffixes are supported. * Spaces (but not other whitespace) between value and suffix are allowed. * * @param sizestring A string containing a (decimal) size value. * @param size Pointer to uint64_t which will contain the string's size value. * * @return SR_OK upon success, SR_ERR upon errors. * * @since 0.1.0 */ SR_API int sr_parse_sizestring(const char *sizestring, uint64_t *size) { uint64_t multiplier; int done; double frac_part; char *s; *size = strtoull(sizestring, &s, 10); multiplier = 0; frac_part = 0; done = FALSE; while (s && *s && multiplier == 0 && !done) { switch (*s) { case ' ': break; case '.': frac_part = g_ascii_strtod(s, &s); break; case 'k': case 'K': multiplier = SR_KHZ(1); break; case 'm': case 'M': multiplier = SR_MHZ(1); break; case 'g': case 'G': multiplier = SR_GHZ(1); break; case 't': case 'T': multiplier = SR_GHZ(1000); break; case 'p': case 'P': multiplier = SR_GHZ(1000 * 1000); break; case 'e': case 'E': multiplier = SR_GHZ(1000 * 1000 * 1000); break; default: done = TRUE; s--; } s++; } if (multiplier > 0) { *size *= multiplier; *size += frac_part * multiplier; } else { *size += frac_part; } if (s && *s && g_ascii_strcasecmp(s, "Hz")) return SR_ERR; return SR_OK; } /** * Convert a "natural" string representation of a time value to an * uint64_t value in milliseconds. * * E.g. a value of "3s" or "3 s" would be converted to 3000, a value * of "15ms" would be converted to 15. * * Value representations other than decimal (such as hex or octal) are not * supported. Only lower-case "s" and "ms" time suffixes are supported. * Spaces (but not other whitespace) between value and suffix are allowed. * * @param timestring A string containing a (decimal) time value. * @return The string's time value as uint64_t, in milliseconds. * * @todo Add support for "m" (minutes) and others. * @todo Add support for picoseconds? * @todo Allow both lower-case and upper-case? If no, document it. * * @since 0.1.0 */ SR_API uint64_t sr_parse_timestring(const char *timestring) { uint64_t time_msec; char *s; /* TODO: Error handling, logging. */ time_msec = strtoull(timestring, &s, 10); if (time_msec == 0 && s == timestring) return 0; if (s && *s) { while (*s == ' ') s++; if (!strcmp(s, "s")) time_msec *= 1000; else if (!strcmp(s, "ms")) ; /* redundant */ else return 0; } return time_msec; } /** @since 0.1.0 */ SR_API gboolean sr_parse_boolstring(const char *boolstr) { /* * Complete absence of an input spec is assumed to mean TRUE, * as in command line option strings like this: * ...:samplerate=100k:header:numchannels=4:... */ if (!boolstr || !*boolstr) return TRUE; if (!g_ascii_strncasecmp(boolstr, "true", 4) || !g_ascii_strncasecmp(boolstr, "yes", 3) || !g_ascii_strncasecmp(boolstr, "on", 2) || !g_ascii_strncasecmp(boolstr, "1", 1)) return TRUE; return FALSE; } /** @since 0.2.0 */ SR_API int sr_parse_period(const char *periodstr, uint64_t *p, uint64_t *q) { char *s; *p = strtoull(periodstr, &s, 10); if (*p == 0 && s == periodstr) /* No digits found. */ return SR_ERR_ARG; if (s && *s) { while (*s == ' ') s++; if (!strcmp(s, "fs")) *q = 1000000000000000ULL; else if (!strcmp(s, "ps")) *q = 1000000000000ULL; else if (!strcmp(s, "ns")) *q = 1000000000ULL; else if (!strcmp(s, "us")) *q = 1000000; else if (!strcmp(s, "ms")) *q = 1000; else if (!strcmp(s, "s")) *q = 1; else /* Must have a time suffix. */ return SR_ERR_ARG; } return SR_OK; } /** @since 0.2.0 */ SR_API int sr_parse_voltage(const char *voltstr, uint64_t *p, uint64_t *q) { char *s; *p = strtoull(voltstr, &s, 10); if (*p == 0 && s == voltstr) /* No digits found. */ return SR_ERR_ARG; if (s && *s) { while (*s == ' ') s++; if (!g_ascii_strcasecmp(s, "mv")) *q = 1000L; else if (!g_ascii_strcasecmp(s, "v")) *q = 1; else /* Must have a base suffix. */ return SR_ERR_ARG; } return SR_OK; } /** @} */