/* * This file is part of the libsigrok project. * * Copyright (C) 2010-2012 Håvard Espeland , * Copyright (C) 2010 Martin Stensgård * Copyright (C) 2010 Carl Henrik Lunde * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* * ASIX SIGMA/SIGMA2 logic analyzer driver */ #include #include "protocol.h" /* * The ASIX SIGMA hardware supports fixed 200MHz and 100MHz sample rates * (by means of separate firmware images). As well as 50MHz divided by * an integer divider in the 1..256 range (by the "typical" firmware). * Which translates to a strict lower boundary of around 195kHz. * * This driver "suggests" a subset of the available rates by listing a * few discrete values, while setter routines accept any user specified * rate that is supported by the hardware. */ SR_PRIV const uint64_t samplerates[] = { /* 50MHz and integer divider. 1/2/5 steps (where possible). */ SR_KHZ(200), SR_KHZ(500), SR_MHZ(1), SR_MHZ(2), SR_MHZ(5), SR_MHZ(10), SR_MHZ(25), SR_MHZ(50), /* 100MHz/200MHz, fixed rates in special firmware. */ SR_MHZ(100), SR_MHZ(200), }; SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates); static const char *firmware_files[] = { [SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */ [SIGMA_FW_100MHZ] = "asix-sigma-100.fw", /* 100MHz, fixed. */ [SIGMA_FW_200MHZ] = "asix-sigma-200.fw", /* 200MHz, fixed. */ [SIGMA_FW_SYNC] = "asix-sigma-50sync.fw", /* Sync from external pin. */ [SIGMA_FW_FREQ] = "asix-sigma-phasor.fw", /* Frequency counter. */ }; #define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024) static int sigma_read(struct dev_context *devc, void *buf, size_t size) { int ret; ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size); if (ret < 0) { sr_err("ftdi_read_data failed: %s", ftdi_get_error_string(&devc->ftdic)); } return ret; } static int sigma_write(struct dev_context *devc, const void *buf, size_t size) { int ret; ret = ftdi_write_data(&devc->ftdic, buf, size); if (ret < 0) sr_err("ftdi_write_data failed: %s", ftdi_get_error_string(&devc->ftdic)); else if ((size_t) ret != size) sr_err("ftdi_write_data did not complete write."); return ret; } /* * NOTE: We chose the buffer size to be large enough to hold any write to the * device. We still print a message just in case. */ SR_PRIV int sigma_write_register(struct dev_context *devc, uint8_t reg, uint8_t *data, size_t len) { uint8_t buf[80], *wrptr; size_t idx, count; int ret; if (2 + 2 * len > sizeof(buf)) { sr_err("Write buffer too small to write %zu bytes.", len); return SR_ERR_BUG; } wrptr = buf; write_u8_inc(&wrptr, REG_ADDR_LOW | (reg & 0xf)); write_u8_inc(&wrptr, REG_ADDR_HIGH | (reg >> 4)); for (idx = 0; idx < len; idx++) { write_u8_inc(&wrptr, REG_DATA_LOW | (data[idx] & 0xf)); write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data[idx] >> 4)); } count = wrptr - buf; ret = sigma_write(devc, buf, count); if (ret != SR_OK) return ret; return SR_OK; } SR_PRIV int sigma_set_register(struct dev_context *devc, uint8_t reg, uint8_t value) { return sigma_write_register(devc, reg, &value, sizeof(value)); } static int sigma_read_register(struct dev_context *devc, uint8_t reg, uint8_t *data, size_t len) { uint8_t buf[3], *wrptr; wrptr = buf; write_u8_inc(&wrptr, REG_ADDR_LOW | (reg & 0xf)); write_u8_inc(&wrptr, REG_ADDR_HIGH | (reg >> 4)); write_u8_inc(&wrptr, REG_READ_ADDR); sigma_write(devc, buf, wrptr - buf); return sigma_read(devc, data, len); } static int sigma_read_pos(struct dev_context *devc, uint32_t *stoppos, uint32_t *triggerpos) { /* * Read 6 registers starting at trigger position LSB. * Which yields two 24bit counter values. */ const uint8_t buf[] = { REG_ADDR_LOW | READ_TRIGGER_POS_LOW, REG_READ_ADDR | REG_ADDR_INC, REG_READ_ADDR | REG_ADDR_INC, REG_READ_ADDR | REG_ADDR_INC, REG_READ_ADDR | REG_ADDR_INC, REG_READ_ADDR | REG_ADDR_INC, REG_READ_ADDR | REG_ADDR_INC, }, *rdptr; uint8_t result[6]; sigma_write(devc, buf, sizeof(buf)); sigma_read(devc, result, sizeof(result)); rdptr = &result[0]; *triggerpos = read_u24le_inc(&rdptr); *stoppos = read_u24le_inc(&rdptr); /* * These positions consist of "the memory row" in the MSB fields, * and "an event index" within the row in the LSB fields. Part * of the memory row's content is sample data, another part is * timestamps. * * The retrieved register values point to after the captured * position. So they need to get decremented, and adjusted to * cater for the timestamps when the decrement carries over to * a different memory row. */ if ((--*stoppos & ROW_MASK) == ROW_MASK) *stoppos -= CLUSTERS_PER_ROW; if ((--*triggerpos & ROW_MASK) == ROW_MASK) *triggerpos -= CLUSTERS_PER_ROW; return SR_OK; } static int sigma_read_dram(struct dev_context *devc, uint16_t startchunk, size_t numchunks, uint8_t *data) { uint8_t buf[128], *wrptr; size_t chunk; int sel; gboolean is_last; if (2 + 3 * numchunks > ARRAY_SIZE(buf)) { sr_err("Read buffer too small to read %zu DRAM rows", numchunks); return SR_ERR_BUG; } /* Communicate DRAM start address (memory row, aka samples line). */ wrptr = buf; write_u8_inc(&wrptr, startchunk >> 8); write_u8_inc(&wrptr, startchunk & 0xff); sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf); /* * Access DRAM content. Fetch from DRAM to FPGA's internal RAM, * then transfer via USB. Interleave the FPGA's DRAM access and * USB transfer, use alternating buffers (0/1) in the process. */ wrptr = buf; write_u8_inc(&wrptr, REG_DRAM_BLOCK); write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK); for (chunk = 0; chunk < numchunks; chunk++) { sel = chunk % 2; is_last = chunk == numchunks - 1; if (!is_last) write_u8_inc(&wrptr, REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel)); write_u8_inc(&wrptr, REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel)); if (!is_last) write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK); } sigma_write(devc, buf, wrptr - buf); return sigma_read(devc, data, numchunks * ROW_LENGTH_BYTES); } /* Upload trigger look-up tables to Sigma. */ SR_PRIV int sigma_write_trigger_lut(struct dev_context *devc, struct triggerlut *lut) { int i; uint8_t tmp[2]; uint16_t bit; uint8_t buf[6], *wrptr, regval; /* Transpose the table and send to Sigma. */ for (i = 0; i < 16; i++) { bit = 1 << i; tmp[0] = tmp[1] = 0; if (lut->m2d[0] & bit) tmp[0] |= 0x01; if (lut->m2d[1] & bit) tmp[0] |= 0x02; if (lut->m2d[2] & bit) tmp[0] |= 0x04; if (lut->m2d[3] & bit) tmp[0] |= 0x08; if (lut->m3 & bit) tmp[0] |= 0x10; if (lut->m3s & bit) tmp[0] |= 0x20; if (lut->m4 & bit) tmp[0] |= 0x40; if (lut->m0d[0] & bit) tmp[1] |= 0x01; if (lut->m0d[1] & bit) tmp[1] |= 0x02; if (lut->m0d[2] & bit) tmp[1] |= 0x04; if (lut->m0d[3] & bit) tmp[1] |= 0x08; if (lut->m1d[0] & bit) tmp[1] |= 0x10; if (lut->m1d[1] & bit) tmp[1] |= 0x20; if (lut->m1d[2] & bit) tmp[1] |= 0x40; if (lut->m1d[3] & bit) tmp[1] |= 0x80; /* * This logic seems redundant, but separates the value * determination from the wire format, and is useful * during future maintenance and research. */ wrptr = buf; write_u8_inc(&wrptr, tmp[0]); write_u8_inc(&wrptr, tmp[1]); sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf); sigma_set_register(devc, WRITE_TRIGGER_SELECT2, 0x30 | i); } /* Send the parameters */ wrptr = buf; regval = 0; regval |= lut->params.selc << 6; regval |= lut->params.selpresc << 0; write_u8_inc(&wrptr, regval); regval = 0; regval |= lut->params.selinc << 6; regval |= lut->params.selres << 4; regval |= lut->params.sela << 2; regval |= lut->params.selb << 0; write_u8_inc(&wrptr, regval); write_u16le_inc(&wrptr, lut->params.cmpb); write_u16le_inc(&wrptr, lut->params.cmpa); sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf); return SR_OK; } /* * See Xilinx UG332 for Spartan-3 FPGA configuration. The SIGMA device * uses FTDI bitbang mode for netlist download in slave serial mode. * (LATER: The OMEGA device's cable contains a more capable FTDI chip * and uses MPSSE mode for bitbang. -- Can we also use FT232H in FT245 * compatible bitbang mode? For maximum code re-use and reduced libftdi * dependency? See section 3.5.5 of FT232H: D0 clk, D1 data (out), D2 * data (in), D3 select, D4-7 GPIOL. See section 3.5.7 for MCU FIFO.) * * 750kbps rate (four times the speed of sigmalogan) works well for * netlist download. All pins except INIT_B are output pins during * configuration download. * * Some pins are inverted as a byproduct of level shifting circuitry. * That's why high CCLK level (from the cable's point of view) is idle * from the FPGA's perspective. * * The vendor's literature discusses a "suicide sequence" which ends * regular FPGA execution and should be sent before entering bitbang * mode and sending configuration data. Set D7 and toggle D2, D3, D4 * a few times. */ #define BB_PIN_CCLK (1 << 0) /* D0, CCLK */ #define BB_PIN_PROG (1 << 1) /* D1, PROG */ #define BB_PIN_D2 (1 << 2) /* D2, (part of) SUICIDE */ #define BB_PIN_D3 (1 << 3) /* D3, (part of) SUICIDE */ #define BB_PIN_D4 (1 << 4) /* D4, (part of) SUICIDE (unused?) */ #define BB_PIN_INIT (1 << 5) /* D5, INIT, input pin */ #define BB_PIN_DIN (1 << 6) /* D6, DIN */ #define BB_PIN_D7 (1 << 7) /* D7, (part of) SUICIDE */ #define BB_BITRATE (750 * 1000) #define BB_PINMASK (0xff & ~BB_PIN_INIT) /* * Initiate slave serial mode for configuration download. Which is done * by pulsing PROG_B and sensing INIT_B. Make sure CCLK is idle before * initiating the configuration download. * * Run a "suicide sequence" first to terminate the regular FPGA operation * before reconfiguration. The FTDI cable is single channel, and shares * pins which are used for data communication in FIFO mode with pins that * are used for FPGA configuration in bitbang mode. Hardware defaults for * unconfigured hardware, and runtime conditions after FPGA configuration * need to cooperate such that re-configuration of the FPGA can start. */ static int sigma_fpga_init_bitbang_once(struct dev_context *devc) { const uint8_t suicide[] = { BB_PIN_D7 | BB_PIN_D2, BB_PIN_D7 | BB_PIN_D2, BB_PIN_D7 | BB_PIN_D3, BB_PIN_D7 | BB_PIN_D2, BB_PIN_D7 | BB_PIN_D3, BB_PIN_D7 | BB_PIN_D2, BB_PIN_D7 | BB_PIN_D3, BB_PIN_D7 | BB_PIN_D2, }; const uint8_t init_array[] = { BB_PIN_CCLK, BB_PIN_CCLK | BB_PIN_PROG, BB_PIN_CCLK | BB_PIN_PROG, BB_PIN_CCLK, BB_PIN_CCLK, BB_PIN_CCLK, BB_PIN_CCLK, BB_PIN_CCLK, BB_PIN_CCLK, BB_PIN_CCLK, }; int retries, ret; uint8_t data; /* Section 2. part 1), do the FPGA suicide. */ sigma_write(devc, suicide, sizeof(suicide)); sigma_write(devc, suicide, sizeof(suicide)); sigma_write(devc, suicide, sizeof(suicide)); sigma_write(devc, suicide, sizeof(suicide)); g_usleep(10 * 1000); /* Section 2. part 2), pulse PROG. */ sigma_write(devc, init_array, sizeof(init_array)); g_usleep(10 * 1000); ftdi_usb_purge_buffers(&devc->ftdic); /* Wait until the FPGA asserts INIT_B. */ retries = 10; while (retries--) { ret = sigma_read(devc, &data, sizeof(data)); if (ret < 0) return ret; if (data & BB_PIN_INIT) return SR_OK; g_usleep(10 * 1000); } return SR_ERR_TIMEOUT; } /* * This is belt and braces. Re-run the bitbang initiation sequence a few * times should first attempts fail. Failure is rare but can happen (was * observed during driver development). */ static int sigma_fpga_init_bitbang(struct dev_context *devc) { size_t retries; int ret; retries = 10; while (retries--) { ret = sigma_fpga_init_bitbang_once(devc); if (ret == SR_OK) return ret; if (ret != SR_ERR_TIMEOUT) return ret; } return ret; } /* * Configure the FPGA for logic-analyzer mode. */ static int sigma_fpga_init_la(struct dev_context *devc) { uint8_t buf[16], *wrptr; uint8_t data_55, data_aa, mode; uint8_t result[3]; const uint8_t *rdptr; int ret; wrptr = buf; /* Read ID register. */ write_u8_inc(&wrptr, REG_ADDR_LOW | (READ_ID & 0xf)); write_u8_inc(&wrptr, REG_ADDR_HIGH | (READ_ID >> 4)); write_u8_inc(&wrptr, REG_READ_ADDR); /* Write 0x55 to scratch register, read back. */ data_55 = 0x55; write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_TEST & 0xf)); write_u8_inc(&wrptr, REG_DATA_LOW | (data_55 & 0xf)); write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data_55 >> 4)); write_u8_inc(&wrptr, REG_READ_ADDR); /* Write 0xaa to scratch register, read back. */ data_aa = 0xaa; write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_TEST & 0xf)); write_u8_inc(&wrptr, REG_DATA_LOW | (data_aa & 0xf)); write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data_aa >> 4)); write_u8_inc(&wrptr, REG_READ_ADDR); /* Initiate SDRAM initialization in mode register. */ mode = WMR_SDRAMINIT; write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_MODE & 0xf)); write_u8_inc(&wrptr, REG_DATA_LOW | (mode & 0xf)); write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (mode >> 4)); /* * Send the command sequence which contains 3 READ requests. * Expect to see the corresponding 3 response bytes. */ sigma_write(devc, buf, wrptr - buf); ret = sigma_read(devc, result, ARRAY_SIZE(result)); if (ret != ARRAY_SIZE(result)) { sr_err("Insufficient start response length."); return SR_ERR_IO; } rdptr = result; if (read_u8_inc(&rdptr) != 0xa6) { sr_err("Unexpected ID response."); return SR_ERR_DATA; } if (read_u8_inc(&rdptr) != data_55) { sr_err("Unexpected scratch read-back (55)."); return SR_ERR_DATA; } if (read_u8_inc(&rdptr) != data_aa) { sr_err("Unexpected scratch read-back (aa)."); return SR_ERR_DATA; } return SR_OK; } /* * Read the firmware from a file and transform it into a series of bitbang * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d * by the caller of this function. */ static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name, uint8_t **bb_cmd, gsize *bb_cmd_size) { uint8_t *firmware; size_t file_size; uint8_t *p; size_t l; uint32_t imm; size_t bb_size; uint8_t *bb_stream, *bbs, byte, mask, v; /* Retrieve the on-disk firmware file content. */ firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name, &file_size, SIGMA_FIRMWARE_SIZE_LIMIT); if (!firmware) return SR_ERR_IO; /* Unscramble the file content (XOR with "random" sequence). */ p = firmware; l = file_size; imm = 0x3f6df2ab; while (l--) { imm = (imm + 0xa853753) % 177 + (imm * 0x8034052); *p++ ^= imm & 0xff; } /* * Generate a sequence of bitbang samples. With two samples per * FPGA configuration bit, providing the level for the DIN signal * as well as two edges for CCLK. See Xilinx UG332 for details * ("slave serial" mode). * * Note that CCLK is inverted in hardware. That's why the * respective bit is first set and then cleared in the bitbang * sample sets. So that the DIN level will be stable when the * data gets sampled at the rising CCLK edge, and the signals' * setup time constraint will be met. * * The caller will put the FPGA into download mode, will send * the bitbang samples, and release the allocated memory. */ bb_size = file_size * 8 * 2; bb_stream = g_try_malloc(bb_size); if (!bb_stream) { sr_err("%s: Failed to allocate bitbang stream", __func__); g_free(firmware); return SR_ERR_MALLOC; } bbs = bb_stream; p = firmware; l = file_size; while (l--) { byte = *p++; mask = 0x80; while (mask) { v = (byte & mask) ? BB_PIN_DIN : 0; mask >>= 1; *bbs++ = v | BB_PIN_CCLK; *bbs++ = v; } } g_free(firmware); /* The transformation completed successfully, return the result. */ *bb_cmd = bb_stream; *bb_cmd_size = bb_size; return SR_OK; } static int upload_firmware(struct sr_context *ctx, struct dev_context *devc, enum sigma_firmware_idx firmware_idx) { int ret; uint8_t *buf; uint8_t pins; size_t buf_size; const char *firmware; /* Check for valid firmware file selection. */ if (firmware_idx >= ARRAY_SIZE(firmware_files)) return SR_ERR_ARG; firmware = firmware_files[firmware_idx]; if (!firmware || !*firmware) return SR_ERR_ARG; /* Avoid downloading the same firmware multiple times. */ if (devc->firmware_idx == firmware_idx) { sr_info("Not uploading firmware file '%s' again.", firmware); return SR_OK; } devc->state.state = SIGMA_CONFIG; /* Set the cable to bitbang mode. */ ret = ftdi_set_bitmode(&devc->ftdic, BB_PINMASK, BITMODE_BITBANG); if (ret < 0) { sr_err("ftdi_set_bitmode failed: %s", ftdi_get_error_string(&devc->ftdic)); return SR_ERR; } ret = ftdi_set_baudrate(&devc->ftdic, BB_BITRATE); if (ret < 0) { sr_err("ftdi_set_baudrate failed: %s", ftdi_get_error_string(&devc->ftdic)); return SR_ERR; } /* Initiate FPGA configuration mode. */ ret = sigma_fpga_init_bitbang(devc); if (ret) return ret; /* Prepare wire format of the firmware image. */ ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size); if (ret != SR_OK) { sr_err("Could not prepare file %s for download.", firmware); return ret; } /* Write the FPGA netlist to the cable. */ sr_info("Uploading firmware file '%s'.", firmware); sigma_write(devc, buf, buf_size); g_free(buf); /* Leave bitbang mode and discard pending input data. */ ret = ftdi_set_bitmode(&devc->ftdic, 0, BITMODE_RESET); if (ret < 0) { sr_err("ftdi_set_bitmode failed: %s", ftdi_get_error_string(&devc->ftdic)); return SR_ERR; } ftdi_usb_purge_buffers(&devc->ftdic); while (sigma_read(devc, &pins, sizeof(pins)) > 0) ; /* Initialize the FPGA for logic-analyzer mode. */ ret = sigma_fpga_init_la(devc); if (ret != SR_OK) return ret; /* Keep track of successful firmware download completion. */ devc->state.state = SIGMA_IDLE; devc->firmware_idx = firmware_idx; sr_info("Firmware uploaded."); return SR_OK; } /* * The driver supports user specified time or sample count limits. The * device's hardware supports neither, and hardware compression prevents * reliable detection of "fill levels" (currently reached sample counts) * from register values during acquisition. That's why the driver needs * to apply some heuristics: * * - The (optional) sample count limit and the (normalized) samplerate * get mapped to an estimated duration for these samples' acquisition. * - The (optional) time limit gets checked as well. The lesser of the * two limits will terminate the data acquisition phase. The exact * sample count limit gets enforced in session feed submission paths. * - Some slack needs to be given to account for hardware pipelines as * well as late storage of last chunks after compression thresholds * are tripped. The resulting data set will span at least the caller * specified period of time, which shall be perfectly acceptable. * * With RLE compression active, up to 64K sample periods can pass before * a cluster accumulates. Which translates to 327ms at 200kHz. Add two * times that period for good measure, one is not enough to flush the * hardware pipeline (observation from an earlier experiment). */ SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc) { int ret; GVariant *data; uint64_t user_count, user_msecs; uint64_t worst_cluster_time_ms; uint64_t count_msecs, acquire_msecs; sr_sw_limits_init(&devc->acq_limits); /* Get sample count limit, convert to msecs. */ ret = sr_sw_limits_config_get(&devc->cfg_limits, SR_CONF_LIMIT_SAMPLES, &data); if (ret != SR_OK) return ret; user_count = g_variant_get_uint64(data); g_variant_unref(data); count_msecs = 0; if (user_count) count_msecs = 1000 * user_count / devc->samplerate + 1; /* Get time limit, which is in msecs. */ ret = sr_sw_limits_config_get(&devc->cfg_limits, SR_CONF_LIMIT_MSEC, &data); if (ret != SR_OK) return ret; user_msecs = g_variant_get_uint64(data); g_variant_unref(data); /* Get the lesser of them, with both being optional. */ acquire_msecs = ~0ull; if (user_count && count_msecs < acquire_msecs) acquire_msecs = count_msecs; if (user_msecs && user_msecs < acquire_msecs) acquire_msecs = user_msecs; if (acquire_msecs == ~0ull) return SR_OK; /* Add some slack, and use that timeout for acquisition. */ worst_cluster_time_ms = 1000 * 65536 / devc->samplerate; acquire_msecs += 2 * worst_cluster_time_ms; data = g_variant_new_uint64(acquire_msecs); ret = sr_sw_limits_config_set(&devc->acq_limits, SR_CONF_LIMIT_MSEC, data); g_variant_unref(data); if (ret != SR_OK) return ret; sr_sw_limits_acquisition_start(&devc->acq_limits); return SR_OK; } /* * Check whether a caller specified samplerate matches the device's * hardware constraints (can be used for acquisition). Optionally yield * a value that approximates the original spec. * * This routine assumes that input specs are in the 200kHz to 200MHz * range of supported rates, and callers typically want to normalize a * given value to the hardware capabilities. Values in the 50MHz range * get rounded up by default, to avoid a more expensive check for the * closest match, while higher sampling rate is always desirable during * measurement. Input specs which exactly match hardware capabilities * remain unaffected. Because 100/200MHz rates also limit the number of * available channels, they are not suggested by this routine, instead * callers need to pick them consciously. */ SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate) { uint64_t div, rate; /* Accept exact matches for 100/200MHz. */ if (want_rate == SR_MHZ(200) || want_rate == SR_MHZ(100)) { if (have_rate) *have_rate = want_rate; return SR_OK; } /* Accept 200kHz to 50MHz range, and map to near value. */ if (want_rate >= SR_KHZ(200) && want_rate <= SR_MHZ(50)) { div = SR_MHZ(50) / want_rate; rate = SR_MHZ(50) / div; if (have_rate) *have_rate = rate; return SR_OK; } return SR_ERR_ARG; } SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct drv_context *drvc; uint64_t samplerate; int ret; int num_channels; devc = sdi->priv; drvc = sdi->driver->context; /* Accept any caller specified rate which the hardware supports. */ ret = sigma_normalize_samplerate(devc->samplerate, &samplerate); if (ret != SR_OK) return ret; /* * Depending on the samplerates of 200/100/50- MHz, specific * firmware is required and higher rates might limit the set * of available channels. */ num_channels = devc->num_channels; if (samplerate <= SR_MHZ(50)) { ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_50MHZ); num_channels = 16; } else if (samplerate == SR_MHZ(100)) { ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_100MHZ); num_channels = 8; } else if (samplerate == SR_MHZ(200)) { ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_200MHZ); num_channels = 4; } /* * The samplerate affects the number of available logic channels * as well as a sample memory layout detail (the number of samples * which the device will communicate within an "event"). */ if (ret == SR_OK) { devc->num_channels = num_channels; devc->samples_per_event = 16 / devc->num_channels; } return ret; } /* * Arrange for a session feed submit buffer. A queue where a number of * samples gets accumulated to reduce the number of send calls. Which * also enforces an optional sample count limit for data acquisition. * * The buffer holds up to CHUNK_SIZE bytes. The unit size is fixed (the * driver provides a fixed channel layout regardless of samplerate). */ #define CHUNK_SIZE (4 * 1024 * 1024) struct submit_buffer { size_t unit_size; size_t max_samples, curr_samples; uint8_t *sample_data; uint8_t *write_pointer; struct sr_dev_inst *sdi; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; }; static int alloc_submit_buffer(struct sr_dev_inst *sdi) { struct dev_context *devc; struct submit_buffer *buffer; size_t size; devc = sdi->priv; buffer = g_malloc0(sizeof(*buffer)); devc->buffer = buffer; buffer->unit_size = sizeof(uint16_t); size = CHUNK_SIZE; size /= buffer->unit_size; buffer->max_samples = size; size *= buffer->unit_size; buffer->sample_data = g_try_malloc0(size); if (!buffer->sample_data) return SR_ERR_MALLOC; buffer->write_pointer = buffer->sample_data; sr_sw_limits_init(&devc->feed_limits); buffer->sdi = sdi; memset(&buffer->logic, 0, sizeof(buffer->logic)); buffer->logic.unitsize = buffer->unit_size; buffer->logic.data = buffer->sample_data; memset(&buffer->packet, 0, sizeof(buffer->packet)); buffer->packet.type = SR_DF_LOGIC; buffer->packet.payload = &buffer->logic; return SR_OK; } static int setup_submit_limit(struct dev_context *devc) { struct sr_sw_limits *limits; int ret; GVariant *data; uint64_t total; limits = &devc->feed_limits; ret = sr_sw_limits_config_get(&devc->cfg_limits, SR_CONF_LIMIT_SAMPLES, &data); if (ret != SR_OK) return ret; total = g_variant_get_uint64(data); g_variant_unref(data); sr_sw_limits_init(limits); if (total) { data = g_variant_new_uint64(total); ret = sr_sw_limits_config_set(limits, SR_CONF_LIMIT_SAMPLES, data); g_variant_unref(data); if (ret != SR_OK) return ret; } sr_sw_limits_acquisition_start(limits); return SR_OK; } static void free_submit_buffer(struct dev_context *devc) { struct submit_buffer *buffer; if (!devc) return; buffer = devc->buffer; if (!buffer) return; devc->buffer = NULL; g_free(buffer->sample_data); g_free(buffer); } static int flush_submit_buffer(struct dev_context *devc) { struct submit_buffer *buffer; int ret; buffer = devc->buffer; /* Is queued sample data available? */ if (!buffer->curr_samples) return SR_OK; /* Submit to the session feed. */ buffer->logic.length = buffer->curr_samples * buffer->unit_size; ret = sr_session_send(buffer->sdi, &buffer->packet); if (ret != SR_OK) return ret; /* Rewind queue position. */ buffer->curr_samples = 0; buffer->write_pointer = buffer->sample_data; return SR_OK; } static int addto_submit_buffer(struct dev_context *devc, uint16_t sample, size_t count) { struct submit_buffer *buffer; struct sr_sw_limits *limits; int ret; buffer = devc->buffer; limits = &devc->feed_limits; if (sr_sw_limits_check(limits)) count = 0; /* * Individually accumulate and check each sample, such that * accumulation between flushes won't exceed local storage, and * enforcement of user specified limits is exact. */ while (count--) { write_u16le_inc(&buffer->write_pointer, sample); buffer->curr_samples++; if (buffer->curr_samples == buffer->max_samples) { ret = flush_submit_buffer(devc); if (ret != SR_OK) return ret; } sr_sw_limits_update_samples_read(limits, 1); if (sr_sw_limits_check(limits)) break; } return SR_OK; } /* * In 100 and 200 MHz mode, only a single pin rising/falling can be * set as trigger. In other modes, two rising/falling triggers can be set, * in addition to value/mask trigger for any number of channels. * * The Sigma supports complex triggers using boolean expressions, but this * has not been implemented yet. */ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_trigger *trigger; struct sr_trigger_stage *stage; struct sr_trigger_match *match; const GSList *l, *m; int channelbit, trigger_set; devc = sdi->priv; memset(&devc->trigger, 0, sizeof(struct sigma_trigger)); if (!(trigger = sr_session_trigger_get(sdi->session))) return SR_OK; trigger_set = 0; for (l = trigger->stages; l; l = l->next) { stage = l->data; for (m = stage->matches; m; m = m->next) { match = m->data; /* Ignore disabled channels with a trigger. */ if (!match->channel->enabled) continue; channelbit = 1 << match->channel->index; if (devc->samplerate >= SR_MHZ(100)) { /* Fast trigger support. */ if (trigger_set) { sr_err("Only a single pin trigger is " "supported in 100 and 200MHz mode."); return SR_ERR; } if (match->match == SR_TRIGGER_FALLING) { devc->trigger.fallingmask |= channelbit; } else if (match->match == SR_TRIGGER_RISING) { devc->trigger.risingmask |= channelbit; } else { sr_err("Only rising/falling trigger is " "supported in 100 and 200MHz mode."); return SR_ERR; } trigger_set++; } else { /* Simple trigger support (event). */ if (match->match == SR_TRIGGER_ONE) { devc->trigger.simplevalue |= channelbit; devc->trigger.simplemask |= channelbit; } else if (match->match == SR_TRIGGER_ZERO) { devc->trigger.simplevalue &= ~channelbit; devc->trigger.simplemask |= channelbit; } else if (match->match == SR_TRIGGER_FALLING) { devc->trigger.fallingmask |= channelbit; trigger_set++; } else if (match->match == SR_TRIGGER_RISING) { devc->trigger.risingmask |= channelbit; trigger_set++; } /* * Actually, Sigma supports 2 rising/falling triggers, * but they are ORed and the current trigger syntax * does not permit ORed triggers. */ if (trigger_set > 1) { sr_err("Only 1 rising/falling trigger is supported."); return SR_ERR; } } } } return SR_OK; } /* Software trigger to determine exact trigger position. */ static int get_trigger_offset(uint8_t *samples, uint16_t last_sample, struct sigma_trigger *t) { const uint8_t *rdptr; int i; uint16_t sample; rdptr = samples; sample = 0; for (i = 0; i < 8; i++) { if (i > 0) last_sample = sample; sample = read_u16le_inc(&rdptr); /* Simple triggers. */ if ((sample & t->simplemask) != t->simplevalue) continue; /* Rising edge. */ if (((last_sample & t->risingmask) != 0) || ((sample & t->risingmask) != t->risingmask)) continue; /* Falling edge. */ if ((last_sample & t->fallingmask) != t->fallingmask || (sample & t->fallingmask) != 0) continue; break; } /* If we did not match, return original trigger pos. */ return i & 0x7; } static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample) { /* TODO * Check whether the combination of this very sample and the * previous state match the configured trigger condition. This * improves the resolution of the trigger marker's position. * The hardware provided position is coarse, and may point to * a position before the actual match. * * See the previous get_trigger_offset() implementation. This * code needs to get re-used here. */ (void)devc; (void)sample; (void)get_trigger_offset; return FALSE; } static int check_and_submit_sample(struct dev_context *devc, uint16_t sample, size_t count, gboolean check_trigger) { gboolean triggered; int ret; triggered = check_trigger && sample_matches_trigger(devc, sample); if (triggered) { ret = flush_submit_buffer(devc); if (ret != SR_OK) return ret; ret = std_session_send_df_trigger(devc->buffer->sdi); if (ret != SR_OK) return ret; } ret = addto_submit_buffer(devc, sample, count); if (ret != SR_OK) return ret; return SR_OK; } /* * Return the timestamp of "DRAM cluster". */ static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster) { return read_u16le(&cluster->timestamp[0]); } /* * Return one 16bit data entity of a DRAM cluster at the specified index. */ static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx) { return read_u16le(&cl->samples[idx].sample[0]); } /* * Deinterlace sample data that was retrieved at 100MHz samplerate. * One 16bit item contains two samples of 8bits each. The bits of * multiple samples are interleaved. */ static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx) { uint16_t outdata; indata >>= idx; outdata = 0; outdata |= (indata >> (0 * 2 - 0)) & (1 << 0); outdata |= (indata >> (1 * 2 - 1)) & (1 << 1); outdata |= (indata >> (2 * 2 - 2)) & (1 << 2); outdata |= (indata >> (3 * 2 - 3)) & (1 << 3); outdata |= (indata >> (4 * 2 - 4)) & (1 << 4); outdata |= (indata >> (5 * 2 - 5)) & (1 << 5); outdata |= (indata >> (6 * 2 - 6)) & (1 << 6); outdata |= (indata >> (7 * 2 - 7)) & (1 << 7); return outdata; } /* * Deinterlace sample data that was retrieved at 200MHz samplerate. * One 16bit item contains four samples of 4bits each. The bits of * multiple samples are interleaved. */ static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx) { uint16_t outdata; indata >>= idx; outdata = 0; outdata |= (indata >> (0 * 4 - 0)) & (1 << 0); outdata |= (indata >> (1 * 4 - 1)) & (1 << 1); outdata |= (indata >> (2 * 4 - 2)) & (1 << 2); outdata |= (indata >> (3 * 4 - 3)) & (1 << 3); return outdata; } static void sigma_decode_dram_cluster(struct dev_context *devc, struct sigma_dram_cluster *dram_cluster, size_t events_in_cluster, gboolean triggered) { struct sigma_state *ss; uint16_t tsdiff, ts, sample, item16; unsigned int i; if (!devc->use_triggers || !ASIX_SIGMA_WITH_TRIGGER) triggered = FALSE; /* * If this cluster is not adjacent to the previously received * cluster, then send the appropriate number of samples with the * previous values to the sigrok session. This "decodes RLE". * * These samples cannot match the trigger since they just repeat * the previously submitted data pattern. (This assumption holds * for simple level and edge triggers. It would not for timed or * counted conditions, which currently are not supported.) */ ss = &devc->state; ts = sigma_dram_cluster_ts(dram_cluster); tsdiff = ts - ss->lastts; if (tsdiff > 0) { size_t count; sample = ss->lastsample; count = tsdiff * devc->samples_per_event; (void)check_and_submit_sample(devc, sample, count, FALSE); } ss->lastts = ts + EVENTS_PER_CLUSTER; /* * Grab sample data from the current cluster and prepare their * submission to the session feed. Handle samplerate dependent * memory layout of sample data. Accumulation of data chunks * before submission is transparent to this code path, specific * buffer depth is neither assumed nor required here. */ sample = 0; for (i = 0; i < events_in_cluster; i++) { item16 = sigma_dram_cluster_data(dram_cluster, i); if (devc->samplerate == SR_MHZ(200)) { sample = sigma_deinterlace_200mhz_data(item16, 0); check_and_submit_sample(devc, sample, 1, triggered); sample = sigma_deinterlace_200mhz_data(item16, 1); check_and_submit_sample(devc, sample, 1, triggered); sample = sigma_deinterlace_200mhz_data(item16, 2); check_and_submit_sample(devc, sample, 1, triggered); sample = sigma_deinterlace_200mhz_data(item16, 3); check_and_submit_sample(devc, sample, 1, triggered); } else if (devc->samplerate == SR_MHZ(100)) { sample = sigma_deinterlace_100mhz_data(item16, 0); check_and_submit_sample(devc, sample, 1, triggered); sample = sigma_deinterlace_100mhz_data(item16, 1); check_and_submit_sample(devc, sample, 1, triggered); } else { sample = item16; check_and_submit_sample(devc, sample, 1, triggered); } } ss->lastsample = sample; } /* * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster. * Each event is 20ns apart, and can contain multiple samples. * * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart. * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart. * For 50 MHz and below, events contain one sample for each channel, * spread 20 ns apart. */ static int decode_chunk_ts(struct dev_context *devc, struct sigma_dram_line *dram_line, size_t events_in_line, size_t trigger_event) { struct sigma_dram_cluster *dram_cluster; unsigned int clusters_in_line; unsigned int events_in_cluster; unsigned int i; uint32_t trigger_cluster; clusters_in_line = events_in_line; clusters_in_line += EVENTS_PER_CLUSTER - 1; clusters_in_line /= EVENTS_PER_CLUSTER; trigger_cluster = ~0; /* Check if trigger is in this chunk. */ if (trigger_event < EVENTS_PER_ROW) { if (devc->samplerate <= SR_MHZ(50)) { trigger_event -= MIN(EVENTS_PER_CLUSTER - 1, trigger_event); } /* Find in which cluster the trigger occurred. */ trigger_cluster = trigger_event / EVENTS_PER_CLUSTER; } /* For each full DRAM cluster. */ for (i = 0; i < clusters_in_line; i++) { dram_cluster = &dram_line->cluster[i]; /* The last cluster might not be full. */ if ((i == clusters_in_line - 1) && (events_in_line % EVENTS_PER_CLUSTER)) { events_in_cluster = events_in_line % EVENTS_PER_CLUSTER; } else { events_in_cluster = EVENTS_PER_CLUSTER; } sigma_decode_dram_cluster(devc, dram_cluster, events_in_cluster, i == trigger_cluster); } return SR_OK; } static int download_capture(struct sr_dev_inst *sdi) { const uint32_t chunks_per_read = 32; struct dev_context *devc; struct sigma_dram_line *dram_line; int bufsz; uint32_t stoppos, triggerpos; uint8_t modestatus; uint32_t i; uint32_t dl_lines_total, dl_lines_curr, dl_lines_done; uint32_t dl_first_line, dl_line; uint32_t dl_events_in_line; uint32_t trg_line, trg_event; int ret; devc = sdi->priv; dl_events_in_line = EVENTS_PER_ROW; sr_info("Downloading sample data."); devc->state.state = SIGMA_DOWNLOAD; /* * Ask the hardware to stop data acquisition. Reception of the * FORCESTOP request makes the hardware "disable RLE" (store * clusters to DRAM regardless of whether pin state changes) and * raise the POSTTRIGGERED flag. */ sigma_set_register(devc, WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN); do { ret = sigma_read_register(devc, READ_MODE, &modestatus, sizeof(modestatus)); if (ret != sizeof(modestatus)) { sr_err("Could not poll for post-trigger condition."); return FALSE; } } while (!(modestatus & RMR_POSTTRIGGERED)); /* Set SDRAM Read Enable. */ sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN); /* Get the current position. */ sigma_read_pos(devc, &stoppos, &triggerpos); /* Check if trigger has fired. */ ret = sigma_read_register(devc, READ_MODE, &modestatus, sizeof(modestatus)); if (ret != sizeof(modestatus)) { sr_err("Could not query trigger hit."); return FALSE; } trg_line = ~0; trg_event = ~0; if (modestatus & RMR_TRIGGERED) { trg_line = triggerpos >> ROW_SHIFT; trg_event = triggerpos & ROW_MASK; } /* * Determine how many "DRAM lines" of 1024 bytes each we need to * retrieve from the Sigma hardware, so that we have a complete * set of samples. Note that the last line need not contain 64 * clusters, it might be partially filled only. * * When RMR_ROUND is set, the circular buffer in DRAM has wrapped * around. Since the status of the very next line is uncertain in * that case, we skip it and start reading from the next line. */ dl_first_line = 0; dl_lines_total = (stoppos >> ROW_SHIFT) + 1; if (modestatus & RMR_ROUND) { dl_first_line = dl_lines_total + 1; dl_lines_total = ROW_COUNT - 2; } dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line)); if (!dram_line) return FALSE; ret = alloc_submit_buffer(sdi); if (ret != SR_OK) return FALSE; ret = setup_submit_limit(devc); if (ret != SR_OK) return FALSE; dl_lines_done = 0; while (dl_lines_total > dl_lines_done) { /* We can download only up-to 32 DRAM lines in one go! */ dl_lines_curr = MIN(chunks_per_read, dl_lines_total - dl_lines_done); dl_line = dl_first_line + dl_lines_done; dl_line %= ROW_COUNT; bufsz = sigma_read_dram(devc, dl_line, dl_lines_curr, (uint8_t *)dram_line); /* TODO: Check bufsz. For now, just avoid compiler warnings. */ (void)bufsz; /* This is the first DRAM line, so find the initial timestamp. */ if (dl_lines_done == 0) { devc->state.lastts = sigma_dram_cluster_ts(&dram_line[0].cluster[0]); devc->state.lastsample = 0; } for (i = 0; i < dl_lines_curr; i++) { uint32_t trigger_event = ~0; /* The last "DRAM line" need not span its full length. */ if (dl_lines_done + i == dl_lines_total - 1) dl_events_in_line = stoppos & ROW_MASK; /* Test if the trigger happened on this line. */ if (dl_lines_done + i == trg_line) trigger_event = trg_event; decode_chunk_ts(devc, dram_line + i, dl_events_in_line, trigger_event); } dl_lines_done += dl_lines_curr; } flush_submit_buffer(devc); free_submit_buffer(devc); g_free(dram_line); std_session_send_df_end(sdi); devc->state.state = SIGMA_IDLE; sr_dev_acquisition_stop(sdi); return TRUE; } /* * Periodically check the Sigma status when in CAPTURE mode. This routine * checks whether the configured sample count or sample time have passed, * and will stop acquisition and download the acquired samples. */ static int sigma_capture_mode(struct sr_dev_inst *sdi) { struct dev_context *devc; devc = sdi->priv; if (sr_sw_limits_check(&devc->acq_limits)) return download_capture(sdi); return TRUE; } SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data) { struct sr_dev_inst *sdi; struct dev_context *devc; (void)fd; (void)revents; sdi = cb_data; devc = sdi->priv; if (devc->state.state == SIGMA_IDLE) return TRUE; /* * When the application has requested to stop the acquisition, * then immediately start downloading sample data. Otherwise * keep checking configured limits which will terminate the * acquisition and initiate download. */ if (devc->state.state == SIGMA_STOPPING) return download_capture(sdi); if (devc->state.state == SIGMA_CAPTURE) return sigma_capture_mode(sdi); return TRUE; } /* Build a LUT entry used by the trigger functions. */ static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry) { int i, j, k, bit; /* For each quad channel. */ for (i = 0; i < 4; i++) { entry[i] = 0xffff; /* For each bit in LUT. */ for (j = 0; j < 16; j++) { /* For each channel in quad. */ for (k = 0; k < 4; k++) { bit = 1 << (i * 4 + k); /* Set bit in entry */ if ((mask & bit) && ((!(value & bit)) != (!(j & (1 << k))))) entry[i] &= ~(1 << j); } } } } /* Add a logical function to LUT mask. */ static void add_trigger_function(enum triggerop oper, enum triggerfunc func, int index, int neg, uint16_t *mask) { int i, j; int x[2][2], tmp, a, b, aset, bset, rset; memset(x, 0, 4 * sizeof(int)); /* Trigger detect condition. */ switch (oper) { case OP_LEVEL: x[0][1] = 1; x[1][1] = 1; break; case OP_NOT: x[0][0] = 1; x[1][0] = 1; break; case OP_RISE: x[0][1] = 1; break; case OP_FALL: x[1][0] = 1; break; case OP_RISEFALL: x[0][1] = 1; x[1][0] = 1; break; case OP_NOTRISE: x[1][1] = 1; x[0][0] = 1; x[1][0] = 1; break; case OP_NOTFALL: x[1][1] = 1; x[0][0] = 1; x[0][1] = 1; break; case OP_NOTRISEFALL: x[1][1] = 1; x[0][0] = 1; break; } /* Transpose if neg is set. */ if (neg) { for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) { tmp = x[i][j]; x[i][j] = x[1 - i][1 - j]; x[1 - i][1 - j] = tmp; } } } /* Update mask with function. */ for (i = 0; i < 16; i++) { a = (i >> (2 * index + 0)) & 1; b = (i >> (2 * index + 1)) & 1; aset = (*mask >> i) & 1; bset = x[b][a]; rset = 0; if (func == FUNC_AND || func == FUNC_NAND) rset = aset & bset; else if (func == FUNC_OR || func == FUNC_NOR) rset = aset | bset; else if (func == FUNC_XOR || func == FUNC_NXOR) rset = aset ^ bset; if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR) rset = !rset; *mask &= ~(1 << i); if (rset) *mask |= 1 << i; } } /* * Build trigger LUTs used by 50 MHz and lower sample rates for supporting * simple pin change and state triggers. Only two transitions (rise/fall) can be * set at any time, but a full mask and value can be set (0/1). */ SR_PRIV int sigma_build_basic_trigger(struct dev_context *devc, struct triggerlut *lut) { int i,j; uint16_t masks[2] = { 0, 0 }; memset(lut, 0, sizeof(struct triggerlut)); /* Constant for simple triggers. */ lut->m4 = 0xa000; /* Value/mask trigger support. */ build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask, lut->m2d); /* Rise/fall trigger support. */ for (i = 0, j = 0; i < 16; i++) { if (devc->trigger.risingmask & (1 << i) || devc->trigger.fallingmask & (1 << i)) masks[j++] = 1 << i; } build_lut_entry(masks[0], masks[0], lut->m0d); build_lut_entry(masks[1], masks[1], lut->m1d); /* Add glue logic */ if (masks[0] || masks[1]) { /* Transition trigger. */ if (masks[0] & devc->trigger.risingmask) add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3); if (masks[0] & devc->trigger.fallingmask) add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3); if (masks[1] & devc->trigger.risingmask) add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3); if (masks[1] & devc->trigger.fallingmask) add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3); } else { /* Only value/mask trigger. */ lut->m3 = 0xffff; } /* Triggertype: event. */ lut->params.selres = 3; return SR_OK; }