/* * This file is part of the libsigrok project. * * Copyright (C) 2012 Petteri Aimonen * Copyright (C) 2014 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* The VCD input module has the following options: * * numchannels: Maximum number of channels to use. The channels are * detected in the same order as they are listed * in the $var sections of the VCD file. * * skip: Allows skipping until given timestamp in the file. * This can speed up analyzing of long captures. * * Value < 0: Skip until first timestamp listed in * the file. (default) * * Value = 0: Do not skip, instead generate samples * beginning from timestamp 0. * * Value > 0: Start at the given timestamp. * * downsample: Divide the samplerate by the given factor. * This can speed up analyzing of long captures. * * compress: Compress idle periods longer than this value. * This can speed up analyzing of long captures. * Default 0 = don't compress. * * Based on Verilog standard IEEE Std 1364-2001 Version C * * Supported features: * - $var with 'wire' and 'reg' types of scalar variables * - $timescale definition for samplerate * - multiple character variable identifiers * * Most important unsupported features: * - vector variables (bit vectors etc.) * - analog, integer and real number variables * - $dumpvars initial value declaration * - $scope namespaces * - more than 64 channels */ #include #include #include #include #include #include #include "libsigrok-internal.h" #define LOG_PREFIX "input/vcd" #define DEFAULT_NUM_CHANNELS 8 #define CHUNKSIZE (1024 * 1024) struct context { gboolean started; gboolean got_header; uint64_t samplerate; unsigned int maxchannels; unsigned int channelcount; int downsample; unsigned compress; int64_t skip; gboolean skip_until_end; GSList *channels; size_t bytes_per_sample; size_t samples_in_buffer; uint8_t *buffer; uint8_t *current_levels; }; struct vcd_channel { gchar *name; gchar *identifier; }; /* * Reads a single VCD section from input file and parses it to name/contents. * e.g. $timescale 1ps $end => "timescale" "1ps" */ static gboolean parse_section(GString *buf, gchar **name, gchar **contents) { GString *sname, *scontent; gboolean status; unsigned int pos; *name = *contents = NULL; status = FALSE; pos = 0; /* Skip any initial white-space. */ while (pos < buf->len && g_ascii_isspace(buf->str[pos])) pos++; /* Section tag should start with $. */ if (buf->str[pos++] != '$') return FALSE; sname = g_string_sized_new(32); scontent = g_string_sized_new(128); /* Read the section tag. */ while (pos < buf->len && !g_ascii_isspace(buf->str[pos])) g_string_append_c(sname, buf->str[pos++]); /* Skip whitespace before content. */ while (pos < buf->len && g_ascii_isspace(buf->str[pos])) pos++; /* Read the content. */ while (pos < buf->len - 4 && strncmp(buf->str + pos, "$end", 4)) g_string_append_c(scontent, buf->str[pos++]); if (sname->len && pos < buf->len - 4 && !strncmp(buf->str + pos, "$end", 4)) { status = TRUE; pos += 4; while (pos < buf->len && g_ascii_isspace(buf->str[pos])) pos++; g_string_erase(buf, 0, pos); } *name = g_string_free(sname, !status); *contents = g_string_free(scontent, !status); if (*contents) g_strchomp(*contents); return status; } static void free_channel(void *data) { struct vcd_channel *vcd_ch = data; g_free(vcd_ch->name); g_free(vcd_ch->identifier); g_free(vcd_ch); } /* Remove empty parts from an array returned by g_strsplit. */ static void remove_empty_parts(gchar **parts) { gchar **src = parts; gchar **dest = parts; while (*src != NULL) { if (**src != '\0') *dest++ = *src; src++; } *dest = NULL; } /* * Parse VCD header to get values for context structure. * The context structure should be zeroed before calling this. */ static gboolean parse_header(const struct sr_input *in, GString *buf) { struct vcd_channel *vcd_ch; uint64_t p, q; struct context *inc; gboolean status; gchar *name, *contents, **parts; inc = in->priv; name = contents = NULL; status = FALSE; while (parse_section(buf, &name, &contents)) { sr_dbg("Section '%s', contents '%s'.", name, contents); if (g_strcmp0(name, "enddefinitions") == 0) { status = TRUE; break; } else if (g_strcmp0(name, "timescale") == 0) { /* * The standard allows for values 1, 10 or 100 * and units s, ms, us, ns, ps and fs. */ if (sr_parse_period(contents, &p, &q) == SR_OK) { inc->samplerate = q / p; if (q % p != 0) { /* Does not happen unless time value is non-standard */ sr_warn("Inexact rounding of samplerate, %" PRIu64 " / %" PRIu64 " to %" PRIu64 " Hz.", q, p, inc->samplerate); } sr_dbg("Samplerate: %" PRIu64, inc->samplerate); } else { sr_err("Parsing timescale failed."); } } else if (g_strcmp0(name, "var") == 0) { /* Format: $var type size identifier reference [opt. index] $end */ unsigned int length; parts = g_strsplit_set(contents, " \r\n\t", 0); remove_empty_parts(parts); length = g_strv_length(parts); if (length != 4 && length != 5) sr_warn("$var section should have 4 or 5 items"); else if (g_strcmp0(parts[0], "reg") != 0 && g_strcmp0(parts[0], "wire") != 0) sr_info("Unsupported signal type: '%s'", parts[0]); else if (strtol(parts[1], NULL, 10) != 1) sr_info("Unsupported signal size: '%s'", parts[1]); else if (inc->channelcount >= inc->maxchannels) sr_warn("Skipping '%s%s' because only %d channels requested.", parts[3], parts[4] ? : "", inc->maxchannels); else { vcd_ch = g_malloc(sizeof(struct vcd_channel)); vcd_ch->identifier = g_strdup(parts[2]); if (length == 4) vcd_ch->name = g_strdup(parts[3]); else vcd_ch->name = g_strconcat(parts[3], parts[4], NULL); sr_info("Channel %d is '%s' identified by '%s'.", inc->channelcount, vcd_ch->name, vcd_ch->identifier); inc->channels = g_slist_append(inc->channels, vcd_ch); inc->channelcount++; } g_strfreev(parts); } g_free(name); name = NULL; g_free(contents); contents = NULL; } g_free(name); g_free(contents); /* * Compute how many bytes each sample will have and initialize the * current levels. The current levels will be updated whenever VCD * has changes. */ inc->bytes_per_sample = (inc->channelcount + 7) / 8; inc->current_levels = g_malloc0(inc->bytes_per_sample); inc->got_header = status; return status; } static int format_match(GHashTable *metadata) { GString *buf, *tmpbuf; gboolean status; gchar *name, *contents; buf = g_hash_table_lookup(metadata, GINT_TO_POINTER(SR_INPUT_META_HEADER)); tmpbuf = g_string_new_len(buf->str, buf->len); /* * If we can parse the first section correctly, * then it is assumed to be a VCD file. */ status = parse_section(tmpbuf, &name, &contents); g_string_free(tmpbuf, TRUE); g_free(name); g_free(contents); return status ? SR_OK : SR_ERR; } /* Send all accumulated bytes from inc->buffer. */ static void send_buffer(const struct sr_input *in) { struct context *inc; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; inc = in->priv; if (inc->samples_in_buffer == 0) return; packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.unitsize = inc->bytes_per_sample; logic.data = inc->buffer; logic.length = inc->bytes_per_sample * inc->samples_in_buffer; sr_session_send(in->sdi, &packet); inc->samples_in_buffer = 0; } /* * Add N copies of the current sample to buffer. * When the buffer fills up, automatically send it. */ static void add_samples(const struct sr_input *in, size_t count) { struct context *inc; size_t samples_per_chunk; size_t space_left, i; uint8_t *p; inc = in->priv; samples_per_chunk = CHUNKSIZE / inc->bytes_per_sample; while (count) { space_left = samples_per_chunk - inc->samples_in_buffer; if (space_left > count) space_left = count; p = inc->buffer + inc->samples_in_buffer * inc->bytes_per_sample; for (i = 0; i < space_left; i++) { memcpy(p, inc->current_levels, inc->bytes_per_sample); p += inc->bytes_per_sample; inc->samples_in_buffer++; count--; } if (inc->samples_in_buffer == samples_per_chunk) send_buffer(in); } } /* Parse a set of lines from the data section. */ static void parse_contents(const struct sr_input *in, char *data) { struct context *inc; struct vcd_channel *vcd_ch; GSList *l; uint64_t timestamp, prev_timestamp; unsigned int bit, i, j; char **tokens; inc = in->priv; prev_timestamp = 0; /* Read one space-delimited token at a time. */ tokens = g_strsplit_set(data, " \t\r\n", 0); remove_empty_parts(tokens); for (i = 0; tokens[i]; i++) { if (inc->skip_until_end) { if (!strcmp(tokens[i], "$end")) { /* Done with unhandled/unknown section. */ inc->skip_until_end = FALSE; break; } } if (tokens[i][0] == '#' && g_ascii_isdigit(tokens[i][1])) { /* Numeric value beginning with # is a new timestamp value */ timestamp = strtoull(tokens[i] + 1, NULL, 10); if (inc->downsample > 1) timestamp /= inc->downsample; /* * Skip < 0 => skip until first timestamp. * Skip = 0 => don't skip * Skip > 0 => skip until timestamp >= skip. */ if (inc->skip < 0) { inc->skip = timestamp; prev_timestamp = timestamp; } else if (inc->skip > 0 && timestamp < (uint64_t)inc->skip) { prev_timestamp = inc->skip; } else if (timestamp == prev_timestamp) { /* Ignore repeated timestamps (e.g. sigrok outputs these) */ } else { if (inc->compress != 0 && timestamp - prev_timestamp > inc->compress) { /* Compress long idle periods */ prev_timestamp = timestamp - inc->compress; } sr_dbg("New timestamp: %" PRIu64, timestamp); /* Generate samples from prev_timestamp up to timestamp - 1. */ add_samples(in, timestamp - prev_timestamp); prev_timestamp = timestamp; } } else if (tokens[i][0] == '$' && tokens[i][1] != '\0') { /* * This is probably a $dumpvars, $comment or similar. * $dump* contain useful data. */ if (g_strcmp0(tokens[i], "$dumpvars") == 0 || g_strcmp0(tokens[i], "$dumpon") == 0 || g_strcmp0(tokens[i], "$dumpoff") == 0 || g_strcmp0(tokens[i], "$end") == 0) { /* Ignore, parse contents as normally. */ } else { /* Ignore this and future lines until $end. */ inc->skip_until_end = TRUE; break; } } else if (strchr("bBrR", tokens[i][0]) != NULL) { sr_dbg("Vector values not supported yet"); if (!tokens[++i]) /* No tokens left, bail out */ break; else /* Process next token */ continue; } else if (strchr("01xXzZ", tokens[i][0]) != NULL) { char *identifier; /* A new 1-bit sample value */ bit = (tokens[i][0] == '1'); /* * The identifier is either the next character, or, if * there was whitespace after the bit, the next token. */ if (tokens[i][1] == '\0') { if (!tokens[++i]) { sr_dbg("Identifier missing!"); break; } identifier = tokens[i]; } else { identifier = tokens[i] + 1; } for (j = 0, l = inc->channels; j < inc->channelcount && l; j++, l = l->next) { vcd_ch = l->data; if (g_strcmp0(identifier, vcd_ch->identifier) == 0) { /* Found our channel */ size_t byte_idx = (j / 8); size_t bit_idx = j - 8 * byte_idx; if (bit) inc->current_levels[byte_idx] |= (uint8_t)1 << bit_idx; else inc->current_levels[byte_idx] &= ~((uint8_t)1 << bit_idx); break; } } if (j == inc->channelcount) sr_dbg("Did not find channel for identifier '%s'.", identifier); } else { sr_warn("Skipping unknown token '%s'.", tokens[i]); } } g_strfreev(tokens); } static int init(struct sr_input *in, GHashTable *options) { int num_channels, i; char name[16]; struct context *inc; num_channels = g_variant_get_int32(g_hash_table_lookup(options, "numchannels")); if (num_channels < 1) { sr_err("Invalid value for numchannels: must be at least 1."); return SR_ERR_ARG; } inc = in->priv = g_malloc0(sizeof(struct context)); inc->maxchannels = num_channels; inc->downsample = g_variant_get_int32(g_hash_table_lookup(options, "downsample")); if (inc->downsample < 1) inc->downsample = 1; inc->compress = g_variant_get_int32(g_hash_table_lookup(options, "compress")); inc->skip = g_variant_get_int32(g_hash_table_lookup(options, "skip")); inc->skip /= inc->downsample; in->sdi = g_malloc0(sizeof(struct sr_dev_inst)); in->priv = inc; inc->buffer = g_malloc(CHUNKSIZE); for (i = 0; i < num_channels; i++) { snprintf(name, 16, "%d", i); sr_channel_new(in->sdi, i, SR_CHANNEL_LOGIC, TRUE, name); } return SR_OK; } static gboolean have_header(GString *buf) { unsigned int pos; char *p; if (!(p = g_strstr_len(buf->str, buf->len, "$enddefinitions"))) return FALSE; pos = p - buf->str + 15; while (pos < buf->len - 4 && g_ascii_isspace(buf->str[pos])) pos++; if (!strncmp(buf->str + pos, "$end", 4)) return TRUE; return FALSE; } static int process_buffer(struct sr_input *in) { struct sr_datafeed_packet packet; struct sr_datafeed_meta meta; struct sr_config *src; struct context *inc; uint64_t samplerate; char *p; inc = in->priv; if (!inc->started) { std_session_send_df_header(in->sdi, LOG_PREFIX); packet.type = SR_DF_META; packet.payload = &meta; samplerate = inc->samplerate / inc->downsample; src = sr_config_new(SR_CONF_SAMPLERATE, g_variant_new_uint64(samplerate)); meta.config = g_slist_append(NULL, src); sr_session_send(in->sdi, &packet); g_slist_free(meta.config); sr_config_free(src); inc->started = TRUE; } while ((p = g_strrstr_len(in->buf->str, in->buf->len, "\n"))) { *p = '\0'; g_strstrip(in->buf->str); if (in->buf->str[0] != '\0') parse_contents(in, in->buf->str); g_string_erase(in->buf, 0, p - in->buf->str + 1); } return SR_OK; } static int receive(struct sr_input *in, GString *buf) { struct context *inc; int ret; g_string_append_len(in->buf, buf->str, buf->len); inc = in->priv; if (!inc->got_header) { if (!have_header(in->buf)) return SR_OK; if (!parse_header(in, in->buf)) /* There was a header in there, but it was malformed. */ return SR_ERR; in->sdi_ready = TRUE; /* sdi is ready, notify frontend. */ return SR_OK; } ret = process_buffer(in); return ret; } static int end(struct sr_input *in) { struct sr_datafeed_packet packet; struct context *inc; int ret; inc = in->priv; if (in->sdi_ready) ret = process_buffer(in); else ret = SR_OK; /* Send any samples that haven't been sent yet. */ send_buffer(in); if (inc->started) { packet.type = SR_DF_END; sr_session_send(in->sdi, &packet); } return ret; } static void cleanup(struct sr_input *in) { struct context *inc; inc = in->priv; g_slist_free_full(inc->channels, free_channel); g_free(inc->buffer); inc->buffer = NULL; g_free(inc->current_levels); inc->current_levels = NULL; } static struct sr_option options[] = { { "numchannels", "Number of channels", "Number of channels", NULL, NULL }, { "skip", "Skip", "Skip until timestamp", NULL, NULL }, { "downsample", "Downsample", "Divide samplerate by factor", NULL, NULL }, { "compress", "Compress", "Compress idle periods longer than this value", NULL, NULL }, ALL_ZERO }; static const struct sr_option *get_options(void) { if (!options[0].def) { options[0].def = g_variant_ref_sink(g_variant_new_int32(DEFAULT_NUM_CHANNELS)); options[1].def = g_variant_ref_sink(g_variant_new_int32(-1)); options[2].def = g_variant_ref_sink(g_variant_new_int32(1)); options[3].def = g_variant_ref_sink(g_variant_new_int32(0)); } return options; } SR_PRIV struct sr_input_module input_vcd = { .id = "vcd", .name = "VCD", .desc = "Value Change Dump", .exts = (const char*[]){"vcd", NULL}, .metadata = { SR_INPUT_META_HEADER | SR_INPUT_META_REQUIRED }, .options = get_options, .format_match = format_match, .init = init, .receive = receive, .end = end, .cleanup = cleanup, };