/* * This file is part of the libsigrok project. * * Copyright (C) 2014-2015 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include "libsigrok-internal.h" #define LOG_PREFIX "vc870" /* Exponents for the respective measurement mode. */ static const int exponents[][8] = { { -4, -3, -2, -1, 0, 0, 0, 0 }, /* DCV */ { -3, -2, -1, 0, 0, 0, 0, 0 }, /* ACV */ { -5, 0, 0, 0, 0, 0, 0, 0 }, /* DCmV */ { -1, 0, 0, 0, 0, 0, 0, 0 }, /* Temperature (C) */ // { -2, 0, 0, 0, 0, 0, 0, 0 }, /* TODO: Temperature (F) */ /* * Note: The sequence -1 -> 1 for the resistance * value is correct and verified in practice! * Don't trust the vendor docs on this. */ { -2, -1, 1, 2, 3, 4, 0, 0 }, /* Resistance */ { -2, 0, 0, 0, 0, 0, 0, 0 }, /* Continuity */ { -12, -11, -10, -9, -8, -7, -6, 0 }, /* Capacitance */ { -4, 0, 0, 0, 0, 0, 0, 0 }, /* Diode */ { -3, -2, -1, 0, 1, 2, 3, 4 }, /* Frequency */ { -2, 0, 0, 0, 0, 0, 0, 0 }, /* Loop current */ /* * Note: Measurements showed that AC and DC differ * in the exponents used, although docs say they should * be the same. */ { -8, -7, 0, 0, 0, 0, 0, 0 }, /* DCµA */ { -7, -6, 0, 0, 0, 0, 0, 0 }, /* ACµA */ { -6, -5, 0, 0, 0, 0, 0, 0 }, /* DCmA */ { -5, -4, 0, 0, 0, 0, 0, 0 }, /* ACmA */ { -3, 0, 0, 0, 0, 0, 0, 0 }, /* DCA */ /* TODO: Verify exponent for ACA */ { -3, 0, 0, 0, 0, 0, 0, 0 }, /* ACA */ { -1, 0, 0, 0, 0, 0, 0, 0 }, /* Act+apparent power */ { -3, 0, 0, 0, 0, 0, 0, 0 }, /* Power exponent / freq */ { -1, 0, 0, 0, 0, 0, 0, 0 }, /* V eff + A eff */ }; static int parse_value(const uint8_t *buf, struct vc870_info *info, float *result) { int i, intval; /* Bytes 3-7: Main display value (5 decimal digits) */ if (info->is_open || info->is_ol1) { sr_spew("Over limit."); *result = INFINITY; return SR_OK; } else if (!isdigit(buf[3]) || !isdigit(buf[4]) || !isdigit(buf[5]) || !isdigit(buf[6]) || !isdigit(buf[7])) { sr_dbg("Invalid digits: %02x %02x %02x %02x %02X " "(%c %c %c %c %c).", buf[3], buf[4], buf[5], buf[6], buf[7], buf[3], buf[4], buf[5], buf[6], buf[7]); return SR_ERR; } intval = 0; for (i = 0; i < 5; i++) intval = 10 * intval + (buf[i + 3] - '0'); /* Main display. */ // intval = 10 * intval + (buf[i + 8] - '0'); /* TODO: Aux display. */ /* Apply sign. */ intval *= info->is_sign1 ? -1 : 1; // intval *= info->is_sign2 ? -1 : 1; /* TODO: Fahrenheit / aux display. */ /* Note: The decimal point position will be parsed later. */ sr_spew("The display value without comma is %05d.", intval); *result = (float)intval; return SR_OK; } static int parse_range(uint8_t b, float *floatval, int *exponent, const struct vc870_info *info) { int idx, mode; idx = b - '0'; if (idx < 0 || idx > 7) { sr_dbg("Invalid range byte / index: 0x%02x / 0x%02x.", b, idx); return SR_ERR; } /* Parse range byte (depends on the measurement mode). */ if (info->is_voltage && info->is_dc && !info->is_milli) mode = 0; /* DCV */ else if (info->is_voltage && info->is_ac) mode = 1; /* ACV */ else if (info->is_voltage && info->is_dc && info->is_milli) mode = 2; /* DCmV */ else if (info->is_temperature) mode = 3; /* Temperature */ else if (info->is_resistance || info->is_continuity) mode = 4; /* Resistance */ else if (info->is_continuity) mode = 5; /* Continuity */ else if (info->is_capacitance) mode = 6; /* Capacitance */ else if (info->is_diode) mode = 7; /* Diode */ else if (info->is_frequency) mode = 8; /* Frequency */ else if (info->is_loop_current) mode = 9; /* Loop current */ else if (info->is_current && info->is_micro && info->is_dc) mode = 10; /* DCµA */ else if (info->is_current && info->is_micro && info->is_ac) mode = 11; /* ACµA */ else if (info->is_current && info->is_milli && info->is_dc) mode = 12; /* DCmA */ else if (info->is_current && info->is_milli && info->is_ac) mode = 13; /* ACmA */ else if (info->is_current && !info->is_milli && !info->is_micro && info->is_dc) mode = 14; /* DCA */ else if (info->is_current && !info->is_milli && !info->is_micro && info->is_ac) mode = 15; /* ACA */ else if (info->is_power_apparent_power) mode = 16; /* Act+apparent power */ else if (info->is_power_factor_freq) mode = 17; /* Power factor / freq */ else if (info->is_v_a_rms_value) mode = 18; /* V eff + A eff */ else { sr_dbg("Invalid mode, range byte was: 0x%02x.", b); return SR_ERR; } *exponent = exponents[mode][idx]; /* Apply respective exponent (mode-dependent) on the value. */ *floatval *= powf(10, *exponent); sr_dbg("Applying exponent %d, new value is %f.", *exponent, *floatval); return SR_OK; } static void parse_flags(const uint8_t *buf, struct vc870_info *info) { /* Bytes 0/1: Function / function select */ /* Note: Some of these mappings are fixed up later. */ switch (buf[0]) { case 0x30: /* DCV / ACV */ info->is_voltage = TRUE; info->is_dc = (buf[1] == 0x30); info->is_ac = (buf[1] == 0x31); break; case 0x31: /* DCmV / Celsius */ if (buf[1] == 0x30) info->is_voltage = info->is_milli = info->is_dc = TRUE; else if (buf[1] == 0x31) info->is_temperature = TRUE; break; case 0x32: /* Resistance / Short-circuit test */ info->is_resistance = (buf[1] == 0x30); info->is_continuity = (buf[1] == 0x31); break; case 0x33: /* Capacitance */ info->is_capacitance = (buf[1] == 0x30); break; case 0x34: /* Diode */ info->is_diode = (buf[1] == 0x30); break; case 0x35: /* (4~20mA)% */ info->is_frequency = (buf[1] == 0x30); info->is_loop_current = (buf[1] == 0x31); break; case 0x36: /* DCµA / ACµA */ info->is_current = info->is_micro = TRUE; info->is_dc = (buf[1] == 0x30); info->is_ac = (buf[1] == 0x31); break; case 0x37: /* DCmA / ACmA */ info->is_current = info->is_milli = TRUE; info->is_dc = (buf[1] == 0x30); info->is_ac = (buf[1] == 0x31); break; case 0x38: /* DCA / ACA */ info->is_current = TRUE; info->is_dc = (buf[1] == 0x30); info->is_ac = (buf[1] == 0x31); break; case 0x39: /* Active power + apparent power / power factor + frequency */ if (buf[1] == 0x30) /* Active power + apparent power */ info->is_power_apparent_power = TRUE; else if (buf[1] == 0x31) /* Power factor + frequency */ info->is_power_factor_freq = TRUE; else if (buf[1] == 0x32) /* Voltage effective value + current effective value */ info->is_v_a_rms_value = TRUE; break; default: sr_dbg("Invalid function bytes: %02x %02x.", buf[0], buf[1]); break; } /* Byte 2: Range */ /* Byte 3-7: Main display digits */ /* Byte 8-12: Auxiliary display digits */ /* Byte 13: TODO: "Simulate strip tens digit". */ /* Byte 14: TODO: "Simulate strip the single digit". */ /* Byte 15: Status */ info->is_sign2 = (buf[15] & (1 << 3)) != 0; info->is_sign1 = (buf[15] & (1 << 2)) != 0; info->is_batt = (buf[15] & (1 << 1)) != 0; /* Bat. low */ info->is_ol1 = (buf[15] & (1 << 0)) != 0; /* Overflow (main display) */ /* Byte 16: Option 1 */ info->is_max = (buf[16] & (1 << 3)) != 0; info->is_min = (buf[16] & (1 << 2)) != 0; info->is_maxmin = (buf[16] & (1 << 1)) != 0; info->is_rel = (buf[16] & (1 << 0)) != 0; /* Byte 17: Option 2 */ info->is_ol2 = (buf[17] & (1 << 3)) != 0; info->is_open = (buf[17] & (1 << 2)) != 0; info->is_manu = (buf[17] & (1 << 1)) != 0; /* Manual mode */ info->is_hold = (buf[17] & (1 << 0)) != 0; /* Hold */ /* Byte 18: Option 3 */ info->is_light = (buf[18] & (1 << 3)) != 0; info->is_usb = (buf[18] & (1 << 2)) != 0; /* Always on */ info->is_warning = (buf[18] & (1 << 1)) != 0; /* Never seen? */ info->is_auto_power = (buf[18] & (1 << 0)) != 0; /* Always on */ /* Byte 19: Option 4 */ info->is_misplug_warn = (buf[19] & (1 << 3)) != 0; /* Never gets set? */ info->is_lo = (buf[19] & (1 << 2)) != 0; info->is_hi = (buf[19] & (1 << 1)) != 0; info->is_open2 = (buf[19] & (1 << 0)) != 0; /* TODO: Unknown. */ /* Byte 20: Dual display bit */ info->is_dual_display = (buf[20] & (1 << 0)) != 0; /* Byte 21: Always '\r' (carriage return, 0x0d, 13) */ /* Byte 22: Always '\n' (newline, 0x0a, 10) */ info->is_auto = !info->is_manu; } static void handle_flags(struct sr_datafeed_analog *analog, float *floatval, const struct vc870_info *info) { /* * Note: is_micro etc. are not used directly to multiply/divide * floatval, this is handled via parse_range() and exponents[][]. */ /* Measurement modes */ if (info->is_voltage) { analog->meaning->mq = SR_MQ_VOLTAGE; analog->meaning->unit = SR_UNIT_VOLT; } if (info->is_current) { analog->meaning->mq = SR_MQ_CURRENT; analog->meaning->unit = SR_UNIT_AMPERE; } if (info->is_resistance) { analog->meaning->mq = SR_MQ_RESISTANCE; analog->meaning->unit = SR_UNIT_OHM; } if (info->is_frequency) { analog->meaning->mq = SR_MQ_FREQUENCY; analog->meaning->unit = SR_UNIT_HERTZ; } if (info->is_capacitance) { analog->meaning->mq = SR_MQ_CAPACITANCE; analog->meaning->unit = SR_UNIT_FARAD; } if (info->is_temperature) { analog->meaning->mq = SR_MQ_TEMPERATURE; analog->meaning->unit = SR_UNIT_CELSIUS; /* TODO: Handle Fahrenheit in auxiliary display. */ // analog->meaning->unit = SR_UNIT_FAHRENHEIT; } if (info->is_continuity) { analog->meaning->mq = SR_MQ_CONTINUITY; analog->meaning->unit = SR_UNIT_BOOLEAN; /* Vendor docs: "< 20 Ohm acoustic" */ *floatval = (*floatval < 0.0 || *floatval > 20.0) ? 0.0 : 1.0; } if (info->is_diode) { analog->meaning->mq = SR_MQ_VOLTAGE; analog->meaning->unit = SR_UNIT_VOLT; } if (info->is_loop_current) { /* 4mA = 0%, 20mA = 100% */ analog->meaning->mq = SR_MQ_CURRENT; analog->meaning->unit = SR_UNIT_PERCENTAGE; } if (info->is_power) { analog->meaning->mq = SR_MQ_POWER; analog->meaning->unit = SR_UNIT_WATT; } if (info->is_power_apparent_power) { analog->meaning->mq = SR_MQ_POWER; analog->meaning->unit = SR_UNIT_WATT; /* TODO: Handle apparent power. */ // analog->meaning->mq = SR_MQ_APPARENT_POWER; // analog->meaning->unit = SR_UNIT_VOLT_AMPERE; } if (info->is_power_factor_freq) { analog->meaning->mq = SR_MQ_POWER_FACTOR; analog->meaning->unit = SR_UNIT_UNITLESS; /* TODO: Handle frequency. */ // analog->meaning->mq = SR_MQ_FREQUENCY; // analog->meaning->unit = SR_UNIT_HERTZ; } if (info->is_v_a_rms_value) { analog->meaning->mqflags |= SR_MQFLAG_RMS; analog->meaning->mq = SR_MQ_VOLTAGE; analog->meaning->unit = SR_UNIT_VOLT; /* TODO: Handle effective current value */ // analog->meaning->mq = SR_MQ_CURRENT; // analog->meaning->unit = SR_UNIT_AMPERE; } /* Measurement related flags */ if (info->is_ac) analog->meaning->mqflags |= SR_MQFLAG_AC; if (info->is_dc) analog->meaning->mqflags |= SR_MQFLAG_DC; if (info->is_auto) analog->meaning->mqflags |= SR_MQFLAG_AUTORANGE; if (info->is_diode) analog->meaning->mqflags |= SR_MQFLAG_DIODE; if (info->is_hold) /* * Note: HOLD only affects the number displayed on the LCD, * but not the value sent via the protocol! It also does not * affect the bargraph on the LCD. */ analog->meaning->mqflags |= SR_MQFLAG_HOLD; if (info->is_max) analog->meaning->mqflags |= SR_MQFLAG_MAX; if (info->is_min) analog->meaning->mqflags |= SR_MQFLAG_MIN; if (info->is_rel) analog->meaning->mqflags |= SR_MQFLAG_RELATIVE; /* Other flags */ if (info->is_batt) sr_spew("Battery is low."); if (info->is_auto_power) sr_spew("Auto-Power-Off enabled."); } static gboolean flags_valid(const struct vc870_info *info) { (void)info; /* TODO: Implement. */ return TRUE; } SR_PRIV gboolean sr_vc870_packet_valid(const uint8_t *buf) { struct vc870_info info; /* Byte 21: Always '\r' (carriage return, 0x0d, 13) */ /* Byte 22: Always '\n' (newline, 0x0a, 10) */ if (buf[21] != '\r' || buf[22] != '\n') return FALSE; parse_flags(buf, &info); return flags_valid(&info); } SR_PRIV int sr_vc870_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info) { int ret, exponent = 0; struct vc870_info *info_local; info_local = (struct vc870_info *)info; memset(info_local, 0, sizeof(struct vc870_info)); if (!sr_vc870_packet_valid(buf)) return SR_ERR; parse_flags(buf, info_local); if ((ret = parse_value(buf, info_local, floatval)) != SR_OK) { sr_dbg("Error parsing value: %d.", ret); return ret; } if ((ret = parse_range(buf[2], floatval, &exponent, info_local)) != SR_OK) return ret; handle_flags(analog, floatval, info_local); analog->encoding->digits = -exponent; analog->spec->spec_digits = -exponent; return SR_OK; }