/* * This file is part of the libsigrok project. * * Copyright (C) 2012 Uwe Hermann * Copyright (C) 2012 Alexandru Gagniuc * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * Fortune Semiconductor FS9721_LP3/FS9721B protocol parser. * * FS9721_LP3: 4000 counts (3 3/4 digits) * FS9721B/Q100: 2400 counts (3 2/3 digits) * * Same for both chips: * - Packages: Bare die (78 pins) or QFP-100 * - Communication parameters: Unidirectional, 2400/8n1 * - The protocol seems to be exactly the same. */ #include #include #include #include #include "libsigrok.h" #include "libsigrok-internal.h" /* Message logging helpers with subsystem-specific prefix string. */ #define LOG_PREFIX "fs9721: " #define sr_log(l, s, args...) sr_log(l, LOG_PREFIX s, ## args) #define sr_spew(s, args...) sr_spew(LOG_PREFIX s, ## args) #define sr_dbg(s, args...) sr_dbg(LOG_PREFIX s, ## args) #define sr_info(s, args...) sr_info(LOG_PREFIX s, ## args) #define sr_warn(s, args...) sr_warn(LOG_PREFIX s, ## args) #define sr_err(s, args...) sr_err(LOG_PREFIX s, ## args) static int parse_digit(uint8_t b) { switch (b) { case 0x7d: return 0; case 0x05: return 1; case 0x5b: return 2; case 0x1f: return 3; case 0x27: return 4; case 0x3e: return 5; case 0x7e: return 6; case 0x15: return 7; case 0x7f: return 8; case 0x3f: return 9; default: sr_err("Invalid digit byte: 0x%02x.", b); return -1; } } static gboolean sync_nibbles_valid(const uint8_t *buf) { int i; /* Check the synchronization nibbles, and make sure they all match. */ for (i = 0; i < FS9721_PACKET_SIZE; i++) { if (((buf[i] >> 4) & 0x0f) != (i + 1)) { sr_err("Sync nibble in byte %d (0x%02x) is invalid.", i, buf[i]); return FALSE; } } return TRUE; } static gboolean flags_valid(const struct fs9721_info *info) { int count; /* Does the packet have more than one multiplier? */ count = 0; count += (info->is_nano) ? 1 : 0; count += (info->is_micro) ? 1 : 0; count += (info->is_milli) ? 1 : 0; count += (info->is_kilo) ? 1 : 0; count += (info->is_mega) ? 1 : 0; if (count > 1) { sr_err("More than one multiplier detected in packet."); return FALSE; } /* Does the packet "measure" more than one type of value? */ count = 0; count += (info->is_hz) ? 1 : 0; count += (info->is_ohm) ? 1 : 0; count += (info->is_farad) ? 1 : 0; count += (info->is_ampere) ? 1 : 0; count += (info->is_volt) ? 1 : 0; count += (info->is_percent) ? 1 : 0; if (count > 1) { sr_err("More than one measurement type detected in packet."); return FALSE; } /* Both AC and DC set? */ if (info->is_ac && info->is_dc) { sr_err("Both AC and DC flags detected in packet."); return FALSE; } /* RS232 flag not set? */ if (!info->is_rs232) { sr_err("No RS232 flag detected in packet."); return FALSE; } return TRUE; } static int parse_value(const uint8_t *buf, float *result) { int i, sign, intval = 0, digits[4]; uint8_t digit_bytes[4]; float floatval; /* Byte 1: LCD SEG2 */ sign = ((buf[1] & (1 << 3)) != 0) ? -1 : 1; /* * Bytes 1-8: Value (4 decimal digits, sign, decimal point) * * Over limit: "0L" (LCD), 0x00 0x7d 0x68 0x00 (digit bytes). */ /* Merge the two nibbles for a digit into one byte. */ for (i = 0; i < 4; i++) { digit_bytes[i] = ((buf[1 + (i * 2)] & 0x0f) << 4); digit_bytes[i] |= (buf[1 + (i * 2) + 1] & 0x0f); /* Bit 7 in the byte is not part of the digit. */ digit_bytes[i] &= ~(1 << 7); } /* Check for "OL". */ if (digit_bytes[0] == 0x00 && digit_bytes[1] == 0x7d && digit_bytes[2] == 0x68 && digit_bytes[3] == 0x00) { sr_spew("Over limit."); *result = INFINITY; return SR_OK; } /* Parse the digits. */ for (i = 0; i < 4; i++) digits[i] = parse_digit(digit_bytes[i]); sr_spew("Digits: %02x %02x %02x %02x (%d%d%d%d).", digit_bytes[0], digit_bytes[1], digit_bytes[2], digit_bytes[3], digits[0], digits[1], digits[2], digits[3]); /* Merge all digits into an integer value. */ for (i = 0; i < 4; i++) { intval *= 10; intval += digits[i]; } floatval = (float)intval; /* Decimal point position. */ if ((buf[3] & (1 << 3)) != 0) { floatval /= 1000; sr_spew("Decimal point after first digit."); } else if ((buf[5] & (1 << 3)) != 0) { floatval /= 100; sr_spew("Decimal point after second digit."); } else if ((buf[7] & (1 << 3)) != 0) { floatval /= 10; sr_spew("Decimal point after third digit."); } else { sr_spew("No decimal point in the number."); } /* Apply sign. */ floatval *= sign; sr_spew("The display value is %f.", floatval); *result = floatval; return SR_OK; } static void parse_flags(const uint8_t *buf, struct fs9721_info *info) { /* Byte 0: LCD SEG1 */ info->is_ac = (buf[0] & (1 << 3)) != 0; info->is_dc = (buf[0] & (1 << 2)) != 0; info->is_auto = (buf[0] & (1 << 1)) != 0; info->is_rs232 = (buf[0] & (1 << 0)) != 0; /* Byte 1: LCD SEG2 */ info->is_sign = (buf[1] & (1 << 3)) != 0; /* Byte 9: LCD SEG10 */ info->is_micro = (buf[9] & (1 << 3)) != 0; info->is_nano = (buf[9] & (1 << 2)) != 0; info->is_kilo = (buf[9] & (1 << 1)) != 0; info->is_diode = (buf[9] & (1 << 0)) != 0; /* Byte 10: LCD SEG11 */ info->is_milli = (buf[10] & (1 << 3)) != 0; info->is_percent = (buf[10] & (1 << 2)) != 0; info->is_mega = (buf[10] & (1 << 1)) != 0; info->is_beep = (buf[10] & (1 << 0)) != 0; /* Byte 11: LCD SEG12 */ info->is_farad = (buf[11] & (1 << 3)) != 0; info->is_ohm = (buf[11] & (1 << 2)) != 0; info->is_rel = (buf[11] & (1 << 1)) != 0; info->is_hold = (buf[11] & (1 << 0)) != 0; /* Byte 12: LCD SEG13 */ info->is_ampere = (buf[12] & (1 << 3)) != 0; info->is_volt = (buf[12] & (1 << 2)) != 0; info->is_hz = (buf[12] & (1 << 1)) != 0; info->is_bat = (buf[12] & (1 << 0)) != 0; /* Byte 13: LCD SEG14 */ info->is_c2c1_11 = (buf[13] & (1 << 3)) != 0; info->is_c2c1_10 = (buf[13] & (1 << 2)) != 0; info->is_c2c1_01 = (buf[13] & (1 << 1)) != 0; info->is_c2c1_00 = (buf[13] & (1 << 0)) != 0; } static void handle_flags(struct sr_datafeed_analog *analog, float *floatval, const struct fs9721_info *info) { /* Factors */ if (info->is_nano) *floatval /= 1000000000; if (info->is_micro) *floatval /= 1000000; if (info->is_milli) *floatval /= 1000; if (info->is_kilo) *floatval *= 1000; if (info->is_mega) *floatval *= 1000000; /* Measurement modes */ if (info->is_volt) { analog->mq = SR_MQ_VOLTAGE; analog->unit = SR_UNIT_VOLT; } if (info->is_ampere) { analog->mq = SR_MQ_CURRENT; analog->unit = SR_UNIT_AMPERE; } if (info->is_ohm) { analog->mq = SR_MQ_RESISTANCE; analog->unit = SR_UNIT_OHM; } if (info->is_hz) { analog->mq = SR_MQ_FREQUENCY; analog->unit = SR_UNIT_HERTZ; } if (info->is_farad) { analog->mq = SR_MQ_CAPACITANCE; analog->unit = SR_UNIT_FARAD; } if (info->is_beep) { analog->mq = SR_MQ_CONTINUITY; analog->unit = SR_UNIT_BOOLEAN; *floatval = (*floatval == INFINITY) ? 0.0 : 1.0; } if (info->is_diode) { analog->mq = SR_MQ_VOLTAGE; analog->unit = SR_UNIT_VOLT; } if (info->is_percent) { analog->mq = SR_MQ_DUTY_CYCLE; analog->unit = SR_UNIT_PERCENTAGE; } /* Measurement related flags */ if (info->is_ac) analog->mqflags |= SR_MQFLAG_AC; if (info->is_dc) analog->mqflags |= SR_MQFLAG_DC; if (info->is_auto) analog->mqflags |= SR_MQFLAG_AUTORANGE; if (info->is_hold) analog->mqflags |= SR_MQFLAG_HOLD; if (info->is_rel) analog->mqflags |= SR_MQFLAG_RELATIVE; /* Other flags */ if (info->is_rs232) sr_spew("RS232 enabled."); if (info->is_bat) sr_spew("Battery is low."); if (info->is_c2c1_00) sr_spew("User-defined LCD symbol 0 is active."); if (info->is_c2c1_01) sr_spew("User-defined LCD symbol 1 is active."); if (info->is_c2c1_10) sr_spew("User-defined LCD symbol 2 is active."); if (info->is_c2c1_11) sr_spew("User-defined LCD symbol 3 is active."); } SR_PRIV gboolean sr_fs9721_packet_valid(const uint8_t *buf) { struct fs9721_info info; parse_flags(buf, &info); return (sync_nibbles_valid(buf) && flags_valid(&info)); } /** * Parse a protocol packet. * * @param buf Buffer containing the 14-byte protocol packet. Must not be NULL. * @param floatval Pointer to a float variable. That variable will contain the * result value upon parsing success. Mut not be NULL. * @param analog Pointer to a struct sr_datafeed_analog. The struct will be * filled with data according to the protocol packet. * Must not be NULL. * @param info Pointer to a struct fs9721_info. The struct will be filled * with data according to the protocol packet. Must not be NULL. * * @return SR_OK upon success, SR_ERR upon failure. Upon errors, the * 'analog' variable contents are undefined and should not be used. */ SR_PRIV int sr_fs9721_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info) { int ret; struct fs9721_info *info_local; info_local = (struct fs9721_info *)info; if ((ret = parse_value(buf, floatval)) != SR_OK) { sr_err("Error parsing value: %d.", ret); return ret; } parse_flags(buf, info_local); handle_flags(analog, floatval, info_local); return SR_OK; } SR_PRIV void sr_fs9721_00_temp_c(struct sr_datafeed_analog *analog, void *info) { struct fs9721_info *info_local; info_local = (struct fs9721_info *)info; /* User-defined FS9721_LP3 flag 'c2c1_00' means temperature (C). */ if (info_local->is_c2c1_00) { analog->mq = SR_MQ_TEMPERATURE; analog->unit = SR_UNIT_CELSIUS; } } SR_PRIV void sr_fs9721_01_temp_c(struct sr_datafeed_analog *analog, void *info) { struct fs9721_info *info_local; info_local = (struct fs9721_info *)info; /* User-defined FS9721_LP3 flag 'c2c1_01' means temperature (C). */ if (info_local->is_c2c1_01) { analog->mq = SR_MQ_TEMPERATURE; analog->unit = SR_UNIT_CELSIUS; } } SR_PRIV void sr_fs9721_10_temp_c(struct sr_datafeed_analog *analog, void *info) { struct fs9721_info *info_local; info_local = (struct fs9721_info *)info; /* User-defined FS9721_LP3 flag 'c2c1_10' means temperature (C). */ if (info_local->is_c2c1_10) { analog->mq = SR_MQ_TEMPERATURE; analog->unit = SR_UNIT_CELSIUS; } } SR_PRIV void sr_fs9721_01_10_temp_f_c(struct sr_datafeed_analog *analog, void *info) { struct fs9721_info *info_local; info_local = (struct fs9721_info *)info; /* User-defined FS9721_LP3 flag 'c2c1_01' means temperature (F). */ if (info_local->is_c2c1_01) { analog->mq = SR_MQ_TEMPERATURE; analog->unit = SR_UNIT_FAHRENHEIT; } /* User-defined FS9721_LP3 flag 'c2c1_10' means temperature (C). */ if (info_local->is_c2c1_10) { analog->mq = SR_MQ_TEMPERATURE; analog->unit = SR_UNIT_CELSIUS; } }