/* * This file is part of the libsigrok project. * * Copyright (C) 2012 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libsigrok-internal.h" #include "protocol.h" /* Max time in ms before we want to check on USB events */ /* TODO tune this properly */ #define TICK 1 #define NUM_TIMEBASE 10 #define NUM_VDIV 8 #define NUM_BUFFER_SIZES 2 static const uint32_t scanopts[] = { SR_CONF_CONN, }; static const uint32_t drvopts[] = { SR_CONF_OSCILLOSCOPE, }; static const uint32_t devopts[] = { SR_CONF_CONTINUOUS, SR_CONF_CONN | SR_CONF_GET, SR_CONF_LIMIT_FRAMES | SR_CONF_SET, SR_CONF_TIMEBASE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_NUM_HDIV | SR_CONF_GET, SR_CONF_HORIZ_TRIGGERPOS | SR_CONF_GET | SR_CONF_SET, SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET, SR_CONF_BUFFERSIZE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_NUM_VDIV | SR_CONF_GET, }; static const uint32_t devopts_cg[] = { SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, SR_CONF_FILTER | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST, }; static const char *channel_names[] = { "CH1", "CH2", }; static const uint64_t buffersizes_32k[] = { (10 * 1024), (32 * 1024), }; static const uint64_t buffersizes_512k[] = { (10 * 1024), (512 * 1024), }; static const uint64_t buffersizes_14k[] = { (10 * 1024), (14 * 1024), }; static const struct dso_profile dev_profiles[] = { { 0x04b4, 0x2090, 0x04b5, 0x2090, "Hantek", "DSO-2090", buffersizes_32k, "hantek-dso-2090.fw" }, { 0x04b4, 0x2150, 0x04b5, 0x2150, "Hantek", "DSO-2150", buffersizes_32k, "hantek-dso-2150.fw" }, { 0x04b4, 0x2250, 0x04b5, 0x2250, "Hantek", "DSO-2250", buffersizes_512k, "hantek-dso-2250.fw" }, { 0x04b4, 0x5200, 0x04b5, 0x5200, "Hantek", "DSO-5200", buffersizes_14k, "hantek-dso-5200.fw" }, { 0x04b4, 0x520a, 0x04b5, 0x520a, "Hantek", "DSO-5200A", buffersizes_512k, "hantek-dso-5200A.fw" }, ALL_ZERO }; static const uint64_t timebases[][2] = { /* microseconds */ { 10, 1000000 }, { 20, 1000000 }, { 40, 1000000 }, { 100, 1000000 }, { 200, 1000000 }, { 400, 1000000 }, /* milliseconds */ { 1, 1000 }, { 2, 1000 }, { 4, 1000 }, { 10, 1000 }, { 20, 1000 }, { 40, 1000 }, { 100, 1000 }, { 200, 1000 }, { 400, 1000 }, }; static const uint64_t vdivs[][2] = { /* millivolts */ { 10, 1000 }, { 20, 1000 }, { 50, 1000 }, { 100, 1000 }, { 200, 1000 }, { 500, 1000 }, /* volts */ { 1, 1 }, { 2, 1 }, { 5, 1 }, }; static const char *trigger_sources[] = { "CH1", "CH2", "EXT", /* TODO: forced */ }; static const char *trigger_slopes[] = { "r", "f", }; static const char *coupling[] = { "AC", "DC", "GND", }; static struct sr_dev_inst *dso_dev_new(const struct dso_profile *prof) { struct sr_dev_inst *sdi; struct sr_channel *ch; struct sr_channel_group *cg; struct dev_context *devc; unsigned int i; sdi = g_malloc0(sizeof(struct sr_dev_inst)); sdi->status = SR_ST_INITIALIZING; sdi->vendor = g_strdup(prof->vendor); sdi->model = g_strdup(prof->model); /* * Add only the real channels -- EXT isn't a source of data, only * a trigger source internal to the device. */ for (i = 0; i < ARRAY_SIZE(channel_names); i++) { ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]); cg = g_malloc0(sizeof(struct sr_channel_group)); cg->name = g_strdup(channel_names[i]); cg->channels = g_slist_append(cg->channels, ch); sdi->channel_groups = g_slist_append(sdi->channel_groups, cg); } devc = g_malloc0(sizeof(struct dev_context)); devc->profile = prof; devc->dev_state = IDLE; devc->timebase = DEFAULT_TIMEBASE; devc->ch_enabled[0] = TRUE; devc->ch_enabled[1] = TRUE; devc->voltage[0] = DEFAULT_VOLTAGE; devc->voltage[1] = DEFAULT_VOLTAGE; devc->coupling[0] = DEFAULT_COUPLING; devc->coupling[1] = DEFAULT_COUPLING; devc->voffset_ch1 = DEFAULT_VERT_OFFSET; devc->voffset_ch2 = DEFAULT_VERT_OFFSET; devc->voffset_trigger = DEFAULT_VERT_TRIGGERPOS; devc->framesize = DEFAULT_FRAMESIZE; devc->triggerslope = SLOPE_POSITIVE; devc->triggersource = g_strdup(DEFAULT_TRIGGER_SOURCE); devc->triggerposition = DEFAULT_HORIZ_TRIGGERPOS; sdi->priv = devc; return sdi; } static int configure_channels(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_channel *ch; const GSList *l; int p; devc = sdi->priv; g_slist_free(devc->enabled_channels); devc->ch_enabled[0] = devc->ch_enabled[1] = FALSE; for (l = sdi->channels, p = 0; l; l = l->next, p++) { ch = l->data; if (p == 0) devc->ch_enabled[0] = ch->enabled; else devc->ch_enabled[1] = ch->enabled; if (ch->enabled) devc->enabled_channels = g_slist_append(devc->enabled_channels, ch); } return SR_OK; } static void clear_helper(struct dev_context *devc) { g_free(devc->triggersource); g_slist_free(devc->enabled_channels); } static int dev_clear(const struct sr_dev_driver *di) { return std_dev_clear_with_callback(di, (std_dev_clear_callback)clear_helper); } static GSList *scan(struct sr_dev_driver *di, GSList *options) { struct drv_context *drvc; struct dev_context *devc; struct sr_dev_inst *sdi; struct sr_usb_dev_inst *usb; struct sr_config *src; const struct dso_profile *prof; GSList *l, *devices, *conn_devices; struct libusb_device_descriptor des; libusb_device **devlist; int i, j; const char *conn; char connection_id[64]; drvc = di->context; devices = 0; conn = NULL; for (l = options; l; l = l->next) { src = l->data; if (src->key == SR_CONF_CONN) { conn = g_variant_get_string(src->data, NULL); break; } } if (conn) conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn); else conn_devices = NULL; /* Find all Hantek DSO devices and upload firmware to all of them. */ libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); for (i = 0; devlist[i]; i++) { if (conn) { usb = NULL; for (l = conn_devices; l; l = l->next) { usb = l->data; if (usb->bus == libusb_get_bus_number(devlist[i]) && usb->address == libusb_get_device_address(devlist[i])) break; } if (!l) /* This device matched none of the ones that * matched the conn specification. */ continue; } libusb_get_device_descriptor(devlist[i], &des); usb_get_port_path(devlist[i], connection_id, sizeof(connection_id)); prof = NULL; for (j = 0; dev_profiles[j].orig_vid; j++) { if (des.idVendor == dev_profiles[j].orig_vid && des.idProduct == dev_profiles[j].orig_pid) { /* Device matches the pre-firmware profile. */ prof = &dev_profiles[j]; sr_dbg("Found a %s %s.", prof->vendor, prof->model); sdi = dso_dev_new(prof); sdi->connection_id = g_strdup(connection_id); devices = g_slist_append(devices, sdi); devc = sdi->priv; if (ezusb_upload_firmware(drvc->sr_ctx, devlist[i], USB_CONFIGURATION, prof->firmware) == SR_OK) /* Remember when the firmware on this device was updated */ devc->fw_updated = g_get_monotonic_time(); else sr_err("Firmware upload failed"); /* Dummy USB address of 0xff will get overwritten later. */ sdi->conn = sr_usb_dev_inst_new( libusb_get_bus_number(devlist[i]), 0xff, NULL); break; } else if (des.idVendor == dev_profiles[j].fw_vid && des.idProduct == dev_profiles[j].fw_pid) { /* Device matches the post-firmware profile. */ prof = &dev_profiles[j]; sr_dbg("Found a %s %s.", prof->vendor, prof->model); sdi = dso_dev_new(prof); sdi->connection_id = g_strdup(connection_id); sdi->status = SR_ST_INACTIVE; devices = g_slist_append(devices, sdi); sdi->inst_type = SR_INST_USB; sdi->conn = sr_usb_dev_inst_new( libusb_get_bus_number(devlist[i]), libusb_get_device_address(devlist[i]), NULL); break; } } if (!prof) /* not a supported VID/PID */ continue; } libusb_free_device_list(devlist, 1); return std_scan_complete(di, devices); } static int dev_open(struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_usb_dev_inst *usb; int64_t timediff_us, timediff_ms; int err; devc = sdi->priv; usb = sdi->conn; /* * If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS * for the FX2 to renumerate. */ err = SR_ERR; if (devc->fw_updated > 0) { sr_info("Waiting for device to reset."); /* Takes >= 300ms for the FX2 to be gone from the USB bus. */ g_usleep(300 * 1000); timediff_ms = 0; while (timediff_ms < MAX_RENUM_DELAY_MS) { if ((err = dso_open(sdi)) == SR_OK) break; g_usleep(100 * 1000); timediff_us = g_get_monotonic_time() - devc->fw_updated; timediff_ms = timediff_us / 1000; sr_spew("Waited %" PRIi64 " ms.", timediff_ms); } sr_info("Device came back after %" PRIi64 " ms.", timediff_ms); } else { err = dso_open(sdi); } if (err != SR_OK) { sr_err("Unable to open device."); return SR_ERR; } err = libusb_claim_interface(usb->devhdl, USB_INTERFACE); if (err != 0) { sr_err("Unable to claim interface: %s.", libusb_error_name(err)); return SR_ERR; } return SR_OK; } static int dev_close(struct sr_dev_inst *sdi) { dso_close(sdi); return SR_OK; } static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; struct sr_usb_dev_inst *usb; char str[128]; const char *s; const uint64_t *vdiv; int ch_idx; switch (key) { case SR_CONF_NUM_HDIV: *data = g_variant_new_int32(NUM_TIMEBASE); break; case SR_CONF_NUM_VDIV: *data = g_variant_new_int32(NUM_VDIV); break; } if (!sdi) return SR_ERR_ARG; devc = sdi->priv; if (!cg) { switch (key) { case SR_CONF_CONN: if (!sdi->conn) return SR_ERR_ARG; usb = sdi->conn; if (usb->address == 255) /* Device still needs to re-enumerate after firmware * upload, so we don't know its (future) address. */ return SR_ERR; snprintf(str, 128, "%d.%d", usb->bus, usb->address); *data = g_variant_new_string(str); break; case SR_CONF_TIMEBASE: *data = g_variant_new("(tt)", timebases[devc->timebase][0], timebases[devc->timebase][1]); break; case SR_CONF_BUFFERSIZE: *data = g_variant_new_uint64(devc->framesize); break; case SR_CONF_TRIGGER_SOURCE: *data = g_variant_new_string(devc->triggersource); break; case SR_CONF_TRIGGER_SLOPE: s = (devc->triggerslope == SLOPE_POSITIVE) ? "r" : "f"; *data = g_variant_new_string(s); break; case SR_CONF_HORIZ_TRIGGERPOS: *data = g_variant_new_double(devc->triggerposition); break; default: return SR_ERR_NA; } } else { if (sdi->channel_groups->data == cg) ch_idx = 0; else if (sdi->channel_groups->next->data == cg) ch_idx = 1; else return SR_ERR_ARG; switch (key) { case SR_CONF_FILTER: *data = g_variant_new_boolean(devc->filter[ch_idx]); break; case SR_CONF_VDIV: vdiv = vdivs[devc->voltage[ch_idx]]; *data = g_variant_new("(tt)", vdiv[0], vdiv[1]); break; case SR_CONF_COUPLING: *data = g_variant_new_string(coupling[devc->coupling[ch_idx]]); break; } } return SR_OK; } static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; double tmp_double; uint64_t tmp_u64, p, q; int tmp_int, ch_idx; unsigned int i; const char *tmp_str; devc = sdi->priv; if (!cg) { switch (key) { case SR_CONF_LIMIT_FRAMES: devc->limit_frames = g_variant_get_uint64(data); break; case SR_CONF_TRIGGER_SLOPE: tmp_str = g_variant_get_string(data, NULL); if (!tmp_str || !(tmp_str[0] == 'f' || tmp_str[0] == 'r')) return SR_ERR_ARG; devc->triggerslope = (tmp_str[0] == 'r') ? SLOPE_POSITIVE : SLOPE_NEGATIVE; break; case SR_CONF_HORIZ_TRIGGERPOS: tmp_double = g_variant_get_double(data); if (tmp_double < 0.0 || tmp_double > 1.0) { sr_err("Trigger position should be between 0.0 and 1.0."); return SR_ERR_ARG; } else devc->triggerposition = tmp_double; break; case SR_CONF_BUFFERSIZE: tmp_u64 = g_variant_get_uint64(data); for (i = 0; i < NUM_BUFFER_SIZES; i++) { if (devc->profile->buffersizes[i] == tmp_u64) { devc->framesize = tmp_u64; break; } } if (i == NUM_BUFFER_SIZES) return SR_ERR_ARG; break; case SR_CONF_TIMEBASE: g_variant_get(data, "(tt)", &p, &q); tmp_int = -1; for (i = 0; i < ARRAY_SIZE(timebases); i++) { if (timebases[i][0] == p && timebases[i][1] == q) { tmp_int = i; break; } } if (tmp_int >= 0) devc->timebase = tmp_int; else return SR_ERR_ARG; break; case SR_CONF_TRIGGER_SOURCE: tmp_str = g_variant_get_string(data, NULL); for (i = 0; trigger_sources[i]; i++) { if (!strcmp(tmp_str, trigger_sources[i])) { devc->triggersource = g_strdup(tmp_str); break; } } if (trigger_sources[i] == 0) return SR_ERR_ARG; break; default: return SR_ERR_NA; } } else { if (sdi->channel_groups->data == cg) ch_idx = 0; else if (sdi->channel_groups->next->data == cg) ch_idx = 1; else return SR_ERR_ARG; switch (key) { case SR_CONF_FILTER: devc->filter[ch_idx] = g_variant_get_boolean(data); break; case SR_CONF_VDIV: g_variant_get(data, "(tt)", &p, &q); tmp_int = -1; for (i = 0; i < ARRAY_SIZE(vdivs); i++) { if (vdivs[i][0] == p && vdivs[i][1] == q) { tmp_int = i; break; } } if (tmp_int >= 0) { devc->voltage[ch_idx] = tmp_int; } else return SR_ERR_ARG; break; case SR_CONF_COUPLING: tmp_str = g_variant_get_string(data, NULL); for (i = 0; coupling[i]; i++) { if (!strcmp(tmp_str, coupling[i])) { devc->coupling[ch_idx] = i; break; } } if (coupling[i] == 0) return SR_ERR_ARG; break; default: return SR_ERR_NA; } } return SR_OK; } static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; GVariant *tuple, *rational[2]; GVariantBuilder gvb; unsigned int i; if (key == SR_CONF_SCAN_OPTIONS) { *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t)); return SR_OK; } else if (key == SR_CONF_DEVICE_OPTIONS && !sdi) { *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t)); return SR_OK; } if (!sdi) return SR_ERR_ARG; if (!cg) { switch (key) { case SR_CONF_DEVICE_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, devopts, ARRAY_SIZE(devopts), sizeof(uint32_t)); break; case SR_CONF_BUFFERSIZE: if (!sdi) return SR_ERR_ARG; devc = sdi->priv; *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64, devc->profile->buffersizes, NUM_BUFFER_SIZES, sizeof(uint64_t)); break; case SR_CONF_TIMEBASE: g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY); for (i = 0; i < ARRAY_SIZE(timebases); i++) { rational[0] = g_variant_new_uint64(timebases[i][0]); rational[1] = g_variant_new_uint64(timebases[i][1]); tuple = g_variant_new_tuple(rational, 2); g_variant_builder_add_value(&gvb, tuple); } *data = g_variant_builder_end(&gvb); break; case SR_CONF_TRIGGER_SOURCE: *data = g_variant_new_strv(trigger_sources, ARRAY_SIZE(trigger_sources)); break; case SR_CONF_TRIGGER_SLOPE: *data = g_variant_new_strv(trigger_slopes, ARRAY_SIZE(trigger_slopes)); break; default: return SR_ERR_NA; } } else { switch (key) { case SR_CONF_DEVICE_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32, devopts_cg, ARRAY_SIZE(devopts_cg), sizeof(uint32_t)); break; case SR_CONF_COUPLING: *data = g_variant_new_strv(coupling, ARRAY_SIZE(coupling)); break; case SR_CONF_VDIV: g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY); for (i = 0; i < ARRAY_SIZE(vdivs); i++) { rational[0] = g_variant_new_uint64(vdivs[i][0]); rational[1] = g_variant_new_uint64(vdivs[i][1]); tuple = g_variant_new_tuple(rational, 2); g_variant_builder_add_value(&gvb, tuple); } *data = g_variant_builder_end(&gvb); break; default: return SR_ERR_NA; } } return SR_OK; } static void send_chunk(struct sr_dev_inst *sdi, unsigned char *buf, int num_samples) { struct sr_datafeed_packet packet; struct sr_datafeed_analog analog; struct sr_analog_encoding encoding; struct sr_analog_meaning meaning; struct sr_analog_spec spec; struct dev_context *devc = sdi->priv; GSList *channels = devc->enabled_channels; packet.type = SR_DF_ANALOG; packet.payload = &analog; /* TODO: support for 5xxx series 9-bit samples */ sr_analog_init(&analog, &encoding, &meaning, &spec, 0); analog.num_samples = num_samples; analog.meaning->mq = SR_MQ_VOLTAGE; analog.meaning->unit = SR_UNIT_VOLT; analog.meaning->mqflags = 0; /* TODO: Check malloc return value. */ analog.data = g_try_malloc(num_samples * sizeof(float)); for (int ch = 0; ch < 2; ch++) { if (!devc->ch_enabled[ch]) continue; float range = ((float)vdivs[devc->voltage[ch]][0] / vdivs[devc->voltage[ch]][1]) * 8; float vdivlog = log10f(range / 255); int digits = -(int)vdivlog + (vdivlog < 0.0); analog.encoding->digits = digits; analog.spec->spec_digits = digits; analog.meaning->channels = g_slist_append(NULL, channels->data); for (int i = 0; i < num_samples; i++) { /* * The device always sends data for both channels. If a channel * is disabled, it contains a copy of the enabled channel's * data. However, we only send the requested channels to * the bus. * * Voltage values are encoded as a value 0-255 (0-512 on the * DSO-5200*), where the value is a point in the range * represented by the vdiv setting. There are 8 vertical divs, * so e.g. 500mV/div represents 4V peak-to-peak where 0 = -2V * and 255 = +2V. */ /* TODO: Support for DSO-5xxx series 9-bit samples. */ ((float *)analog.data)[i] = range / 255 * *(buf + i * 2 + 1 - ch) - range / 2; } sr_session_send(sdi, &packet); g_slist_free(analog.meaning->channels); channels = channels->next; } g_free(analog.data); } /* * Called by libusb (as triggered by handle_event()) when a transfer comes in. * Only channel data comes in asynchronously, and all transfers for this are * queued up beforehand, so this just needs to chuck the incoming data onto * the libsigrok session bus. */ static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer) { struct sr_datafeed_packet packet; struct sr_dev_inst *sdi; struct dev_context *devc; int num_samples, pre; sdi = transfer->user_data; devc = sdi->priv; sr_spew("receive_transfer(): status %s received %d bytes.", libusb_error_name(transfer->status), transfer->actual_length); if (transfer->actual_length == 0) /* Nothing to send to the bus. */ return; num_samples = transfer->actual_length / 2; sr_spew("Got %d-%d/%d samples in frame.", devc->samp_received + 1, devc->samp_received + num_samples, devc->framesize); /* * The device always sends a full frame, but the beginning of the frame * doesn't represent the trigger point. The offset at which the trigger * happened came in with the capture state, so we need to start sending * from there up the session bus. The samples in the frame buffer * before that trigger point came after the end of the device's frame * buffer was reached, and it wrapped around to overwrite up until the * trigger point. */ if (devc->samp_received < devc->trigger_offset) { /* Trigger point not yet reached. */ if (devc->samp_received + num_samples < devc->trigger_offset) { /* The entire chunk is before the trigger point. */ memcpy(devc->framebuf + devc->samp_buffered * 2, transfer->buffer, num_samples * 2); devc->samp_buffered += num_samples; } else { /* * This chunk hits or overruns the trigger point. * Store the part before the trigger fired, and * send the rest up to the session bus. */ pre = devc->trigger_offset - devc->samp_received; memcpy(devc->framebuf + devc->samp_buffered * 2, transfer->buffer, pre * 2); devc->samp_buffered += pre; /* The rest of this chunk starts with the trigger point. */ sr_dbg("Reached trigger point, %d samples buffered.", devc->samp_buffered); /* Avoid the corner case where the chunk ended at * exactly the trigger point. */ if (num_samples > pre) send_chunk(sdi, transfer->buffer + pre * 2, num_samples - pre); } } else { /* Already past the trigger point, just send it all out. */ send_chunk(sdi, transfer->buffer, num_samples); } devc->samp_received += num_samples; /* Everything in this transfer was either copied to the buffer or * sent to the session bus. */ g_free(transfer->buffer); libusb_free_transfer(transfer); if (devc->samp_received >= devc->framesize) { /* That was the last chunk in this frame. Send the buffered * pre-trigger samples out now, in one big chunk. */ sr_dbg("End of frame, sending %d pre-trigger buffered samples.", devc->samp_buffered); send_chunk(sdi, devc->framebuf, devc->samp_buffered); /* Mark the end of this frame. */ packet.type = SR_DF_FRAME_END; sr_session_send(sdi, &packet); if (devc->limit_frames && ++devc->num_frames == devc->limit_frames) { /* Terminate session */ devc->dev_state = STOPPING; } else { devc->dev_state = NEW_CAPTURE; } } } static int handle_event(int fd, int revents, void *cb_data) { const struct sr_dev_inst *sdi; struct sr_datafeed_packet packet; struct timeval tv; struct sr_dev_driver *di; struct dev_context *devc; struct drv_context *drvc; int num_channels; uint32_t trigger_offset; uint8_t capturestate; (void)fd; (void)revents; sdi = cb_data; di = sdi->driver; drvc = di->context; devc = sdi->priv; if (devc->dev_state == STOPPING) { /* We've been told to wind up the acquisition. */ sr_dbg("Stopping acquisition."); /* * TODO: Doesn't really cancel pending transfers so they might * come in after SR_DF_END is sent. */ usb_source_remove(sdi->session, drvc->sr_ctx); std_session_send_df_end(sdi); devc->dev_state = IDLE; return TRUE; } /* Always handle pending libusb events. */ tv.tv_sec = tv.tv_usec = 0; libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv); /* TODO: ugh */ if (devc->dev_state == NEW_CAPTURE) { if (dso_capture_start(sdi) != SR_OK) return TRUE; if (dso_enable_trigger(sdi) != SR_OK) return TRUE; // if (dso_force_trigger(sdi) != SR_OK) // return TRUE; sr_dbg("Successfully requested next chunk."); devc->dev_state = CAPTURE; return TRUE; } if (devc->dev_state != CAPTURE) return TRUE; if ((dso_get_capturestate(sdi, &capturestate, &trigger_offset)) != SR_OK) return TRUE; sr_dbg("Capturestate %d.", capturestate); sr_dbg("Trigger offset 0x%.6x.", trigger_offset); switch (capturestate) { case CAPTURE_EMPTY: if (++devc->capture_empty_count >= MAX_CAPTURE_EMPTY) { devc->capture_empty_count = 0; if (dso_capture_start(sdi) != SR_OK) break; if (dso_enable_trigger(sdi) != SR_OK) break; // if (dso_force_trigger(sdi) != SR_OK) // break; sr_dbg("Successfully requested next chunk."); } break; case CAPTURE_FILLING: /* No data yet. */ break; case CAPTURE_READY_8BIT: /* Remember where in the captured frame the trigger is. */ devc->trigger_offset = trigger_offset; num_channels = (devc->ch_enabled[0] && devc->ch_enabled[1]) ? 2 : 1; devc->framebuf = g_malloc(devc->framesize * num_channels * 2); devc->samp_buffered = devc->samp_received = 0; /* Tell the scope to send us the first frame. */ if (dso_get_channeldata(sdi, receive_transfer) != SR_OK) break; /* * Don't hit the state machine again until we're done fetching * the data we just told the scope to send. */ devc->dev_state = FETCH_DATA; /* Tell the frontend a new frame is on the way. */ packet.type = SR_DF_FRAME_BEGIN; sr_session_send(sdi, &packet); break; case CAPTURE_READY_9BIT: /* TODO */ sr_err("Not yet supported."); break; case CAPTURE_TIMEOUT: /* Doesn't matter, we'll try again next time. */ break; default: sr_dbg("Unknown capture state: %d.", capturestate); break; } return TRUE; } static int dev_acquisition_start(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_dev_driver *di = sdi->driver; struct drv_context *drvc = di->context; devc = sdi->priv; if (configure_channels(sdi) != SR_OK) { sr_err("Failed to configure channels."); return SR_ERR; } if (dso_init(sdi) != SR_OK) return SR_ERR; if (dso_capture_start(sdi) != SR_OK) return SR_ERR; devc->dev_state = CAPTURE; usb_source_add(sdi->session, drvc->sr_ctx, TICK, handle_event, (void *)sdi); std_session_send_df_header(sdi); return SR_OK; } static int dev_acquisition_stop(struct sr_dev_inst *sdi) { struct dev_context *devc; devc = sdi->priv; devc->dev_state = STOPPING; return SR_OK; } static struct sr_dev_driver hantek_dso_driver_info = { .name = "hantek-dso", .longname = "Hantek DSO", .api_version = 1, .init = std_init, .cleanup = std_cleanup, .scan = scan, .dev_list = std_dev_list, .dev_clear = dev_clear, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .context = NULL, }; SR_REGISTER_DEV_DRIVER(hantek_dso_driver_info);