/* * This file is part of the sigrok project. * * Copyright (C) 2010 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #ifdef _WIN32 #include #else #include #endif #include #include #include #ifdef _WIN32 /* TODO */ #else #include #endif #include #include #include #ifdef _WIN32 #define O_NONBLOCK FIONBIO #endif #define NUM_PROBES 32 #define NUM_TRIGGER_STAGES 4 #define TRIGGER_TYPES "01" #define SERIAL_SPEED B115200 #define CLOCK_RATE MHZ(100) #define MIN_NUM_SAMPLES 4 /* Command opcodes */ #define CMD_RESET 0x00 #define CMD_ID 0x02 #define CMD_SET_FLAGS 0x82 #define CMD_SET_DIVIDER 0x80 #define CMD_RUN 0x01 #define CMD_CAPTURE_SIZE 0x81 #define CMD_SET_TRIGGER_MASK_0 0xc0 #define CMD_SET_TRIGGER_MASK_1 0xc4 #define CMD_SET_TRIGGER_MASK_2 0xc8 #define CMD_SET_TRIGGER_MASK_3 0xcc #define CMD_SET_TRIGGER_VALUE_0 0xc1 #define CMD_SET_TRIGGER_VALUE_1 0xc5 #define CMD_SET_TRIGGER_VALUE_2 0xc9 #define CMD_SET_TRIGGER_VALUE_3 0xcd #define CMD_SET_TRIGGER_CONFIG_0 0xc2 #define CMD_SET_TRIGGER_CONFIG_1 0xc6 #define CMD_SET_TRIGGER_CONFIG_2 0xca #define CMD_SET_TRIGGER_CONFIG_3 0xce /* Bitmasks for CMD_FLAGS */ #define FLAG_DEMUX 0x01 #define FLAG_FILTER 0x02 #define FLAG_CHANNELGROUP_1 0x04 #define FLAG_CHANNELGROUP_2 0x08 #define FLAG_CHANNELGROUP_3 0x10 #define FLAG_CHANNELGROUP_4 0x20 #define FLAG_CLOCK_EXTERNAL 0x40 #define FLAG_CLOCK_INVERTED 0x80 #define FLAG_RLE 0x0100 static int capabilities[] = { SR_HWCAP_LOGIC_ANALYZER, SR_HWCAP_SAMPLERATE, SR_HWCAP_CAPTURE_RATIO, SR_HWCAP_LIMIT_SAMPLES, 0, }; static struct samplerates samplerates = { 10, MHZ(200), 1, 0, }; /* List of struct sr_serial_device_instance */ static GSList *device_instances = NULL; /* Current state of the flag register */ static uint32_t flag_reg = 0; static uint64_t cur_samplerate = 0; static uint64_t limit_samples = 0; /* * Pre/post trigger capture ratio, in percentage. * 0 means no pre-trigger data. */ static int capture_ratio = 0; static int trigger_at = -1; static uint32_t probe_mask = 0xffffffff; static uint32_t trigger_mask[4] = { 0, 0, 0, 0 }; static uint32_t trigger_value[4] = { 0, 0, 0, 0 }; static int num_stages = 0; static int send_shortcommand(int fd, uint8_t command) { char buf[1]; g_debug("ols: sending cmd 0x%.2x", command); buf[0] = command; if (serial_write(fd, buf, 1) != 1) return SR_ERR; return SR_OK; } static int send_longcommand(int fd, uint8_t command, uint32_t data) { char buf[5]; g_debug("ols: sending cmd 0x%.2x data 0x%.8x", command, data); buf[0] = command; buf[1] = (data & 0xff000000) >> 24; buf[2] = (data & 0xff0000) >> 16; buf[3] = (data & 0xff00) >> 8; buf[4] = data & 0xff; if (serial_write(fd, buf, 5) != 5) return SR_ERR; return SR_OK; } static int configure_probes(GSList *probes) { struct probe *probe; GSList *l; int probe_bit, stage, i; char *tc; probe_mask = 0; for (i = 0; i < NUM_TRIGGER_STAGES; i++) { trigger_mask[i] = 0; trigger_value[i] = 0; } num_stages = 0; for (l = probes; l; l = l->next) { probe = (struct probe *)l->data; if (!probe->enabled) continue; /* * Set up the probe mask for later configuration into the * flag register. */ probe_bit = 1 << (probe->index - 1); probe_mask |= probe_bit; if (!probe->trigger) continue; /* Configure trigger mask and value. */ stage = 0; for (tc = probe->trigger; tc && *tc; tc++) { trigger_mask[stage] |= probe_bit; if (*tc == '1') trigger_value[stage] |= probe_bit; stage++; if (stage > 3) /* * TODO: Only supporting parallel mode, with * up to 4 stages. */ return SR_ERR; } if (stage > num_stages) num_stages = stage; } return SR_OK; } static uint32_t reverse16(uint32_t in) { uint32_t out; out = (in & 0xff) << 8; out |= (in & 0xff00) >> 8; out |= (in & 0xff0000) << 8; out |= (in & 0xff000000) >> 8; return out; } static uint32_t reverse32(uint32_t in) { uint32_t out; out = (in & 0xff) << 24; out |= (in & 0xff00) << 8; out |= (in & 0xff0000) >> 8; out |= (in & 0xff000000) >> 24; return out; } static int hw_init(char *deviceinfo) { struct sr_device_instance *sdi; GSList *ports, *l; GPollFD *fds; int devcnt, final_devcnt, num_ports, fd, ret, i; char buf[8], **device_names, **serial_params; if (deviceinfo) ports = g_slist_append(NULL, strdup(deviceinfo)); else /* No specific device given, so scan all serial ports. */ ports = list_serial_ports(); num_ports = g_slist_length(ports); fds = calloc(1, num_ports * sizeof(GPollFD)); device_names = malloc(num_ports * sizeof(char *)); serial_params = malloc(num_ports * sizeof(char *)); devcnt = 0; for (l = ports; l; l = l->next) { /* The discovery procedure is like this: first send the Reset * command (0x00) 5 times, since the device could be anywhere * in a 5-byte command. Then send the ID command (0x02). * If the device responds with 4 bytes ("OLS1" or "SLA1"), we * have a match. * * Since it may take the device a while to respond at 115Kb/s, * we do all the sending first, then wait for all of them to * respond with g_poll(). */ g_message("ols: probing %s...", (char *)l->data); fd = serial_open(l->data, O_RDWR | O_NONBLOCK); if (fd != -1) { serial_params[devcnt] = serial_backup_params(fd); serial_set_params(fd, 115200, 8, 0, 1, 2); ret = SR_OK; for (i = 0; i < 5; i++) { if ((ret = send_shortcommand(fd, CMD_RESET)) != SR_OK) { /* Serial port is not writable. */ break; } } if (ret != SR_OK) { serial_restore_params(fd, serial_params[devcnt]); serial_close(fd); continue; } send_shortcommand(fd, CMD_ID); fds[devcnt].fd = fd; fds[devcnt].events = G_IO_IN; device_names[devcnt] = strdup(l->data); devcnt++; } free(l->data); } /* 2ms isn't enough for reliable transfer with pl2303, let's try 10 */ usleep(10000); final_devcnt = 0; g_poll(fds, devcnt, 1); for (i = 0; i < devcnt; i++) { if (fds[i].revents == G_IO_IN) { if (serial_read(fds[i].fd, buf, 4) == 4) { if (!strncmp(buf, "1SLO", 4) || !strncmp(buf, "1ALS", 4)) { if (!strncmp(buf, "1SLO", 4)) sdi = sr_device_instance_new (final_devcnt, SR_ST_INACTIVE, "Openbench", "Logic Sniffer", "v1.0"); else sdi = sr_device_instance_new (final_devcnt, SR_ST_INACTIVE, "Openbench", "Logic Sniffer", "v1.0"); sdi->serial = sr_serial_device_instance_new (device_names[i], -1); device_instances = g_slist_append(device_instances, sdi); final_devcnt++; serial_close(fds[i].fd); fds[i].fd = 0; } } free(device_names[i]); } if (fds[i].fd != 0) { serial_restore_params(fds[i].fd, serial_params[i]); serial_close(fds[i].fd); } free(serial_params[i]); } free(fds); free(device_names); free(serial_params); g_slist_free(ports); cur_samplerate = samplerates.low; return final_devcnt; } static int hw_opendev(int device_index) { struct sr_device_instance *sdi; if (!(sdi = sr_get_device_instance(device_instances, device_index))) return SR_ERR; sdi->serial->fd = serial_open(sdi->serial->port, O_RDWR); if (sdi->serial->fd == -1) return SR_ERR; sdi->status = SR_ST_ACTIVE; return SR_OK; } static void hw_closedev(int device_index) { struct sr_device_instance *sdi; if (!(sdi = sr_get_device_instance(device_instances, device_index))) return; if (sdi->serial->fd != -1) { serial_close(sdi->serial->fd); sdi->serial->fd = -1; sdi->status = SR_ST_INACTIVE; } } static void hw_cleanup(void) { GSList *l; struct sr_device_instance *sdi; /* Properly close all devices. */ for (l = device_instances; l; l = l->next) { sdi = l->data; if (sdi->serial->fd != -1) serial_close(sdi->serial->fd); sr_device_instance_free(sdi); } g_slist_free(device_instances); device_instances = NULL; } static void *hw_get_device_info(int device_index, int device_info_id) { struct sr_device_instance *sdi; void *info; if (!(sdi = sr_get_device_instance(device_instances, device_index))) return NULL; info = NULL; switch (device_info_id) { case SR_DI_INSTANCE: info = sdi; break; case SR_DI_NUM_PROBES: info = GINT_TO_POINTER(NUM_PROBES); break; case SR_DI_SAMPLERATES: info = &samplerates; break; case SR_DI_TRIGGER_TYPES: info = (char *)TRIGGER_TYPES; break; case SR_DI_CUR_SAMPLERATE: info = &cur_samplerate; break; } return info; } static int hw_get_status(int device_index) { struct sr_device_instance *sdi; if (!(sdi = sr_get_device_instance(device_instances, device_index))) return SR_ST_NOT_FOUND; return sdi->status; } static int *hw_get_capabilities(void) { return capabilities; } static int set_configuration_samplerate(struct sr_device_instance *sdi, uint64_t samplerate) { uint32_t divider; if (samplerate < samplerates.low || samplerate > samplerates.high) return SR_ERR_SAMPLERATE; if (samplerate > CLOCK_RATE) { flag_reg |= FLAG_DEMUX; divider = (CLOCK_RATE * 2 / samplerate) - 1; } else { flag_reg &= ~FLAG_DEMUX; divider = (CLOCK_RATE / samplerate) - 1; } g_message("ols: setting samplerate to %" PRIu64 " Hz (divider %u, demux %s)", samplerate, divider, flag_reg & FLAG_DEMUX ? "on" : "off"); if (send_longcommand(sdi->serial->fd, CMD_SET_DIVIDER, reverse32(divider)) != SR_OK) return SR_ERR; cur_samplerate = samplerate; return SR_OK; } static int hw_set_configuration(int device_index, int capability, void *value) { struct sr_device_instance *sdi; int ret; uint64_t *tmp_u64; if (!(sdi = sr_get_device_instance(device_instances, device_index))) return SR_ERR; if (sdi->status != SR_ST_ACTIVE) return SR_ERR; switch (capability) { case SR_HWCAP_SAMPLERATE: tmp_u64 = value; ret = set_configuration_samplerate(sdi, *tmp_u64); break; case SR_HWCAP_PROBECONFIG: ret = configure_probes((GSList *) value); break; case SR_HWCAP_LIMIT_SAMPLES: tmp_u64 = value; if (*tmp_u64 < MIN_NUM_SAMPLES) return SR_ERR; limit_samples = *tmp_u64; g_message("ols: sample limit %" PRIu64, limit_samples); ret = SR_OK; break; case SR_HWCAP_CAPTURE_RATIO: tmp_u64 = value; capture_ratio = *tmp_u64; if (capture_ratio < 0 || capture_ratio > 100) { capture_ratio = 0; ret = SR_ERR; } else ret = SR_OK; break; default: ret = SR_ERR; } return ret; } static int receive_data(int fd, int revents, void *user_data) { static unsigned int num_transfers = 0; static int num_bytes = 0; static char last_sample[4] = { 0xff, 0xff, 0xff, 0xff }; static unsigned char sample[4] = { 0, 0, 0, 0 }; static unsigned char tmp_sample[4]; static unsigned char *raw_sample_buf = NULL; int count, buflen, num_channels, offset, i, j; struct sr_datafeed_packet packet; unsigned char byte, *buffer; if (num_transfers++ == 0) { /* * First time round, means the device started sending data, * and will not stop until done. If it stops sending for * longer than it takes to send a byte, that means it's * finished. We'll double that to 30ms to be sure... */ source_remove(fd); source_add(fd, G_IO_IN, 30, receive_data, user_data); raw_sample_buf = malloc(limit_samples * 4); /* fill with 1010... for debugging */ memset(raw_sample_buf, 0x82, limit_samples * 4); } num_channels = 0; for (i = 0x20; i > 0x02; i /= 2) { if ((flag_reg & i) == 0) num_channels++; } if (revents == G_IO_IN && num_transfers / num_channels <= limit_samples) { if (serial_read(fd, &byte, 1) != 1) return FALSE; sample[num_bytes++] = byte; g_debug("ols: received byte 0x%.2x", byte); if (num_bytes == num_channels) { g_debug("ols: received sample 0x%.*x", num_bytes * 2, (int) *sample); /* Got a full sample. */ if (flag_reg & FLAG_RLE) { /* * In RLE mode -1 should never come in as a * sample, because bit 31 is the "count" flag. * TODO: Endianness may be wrong here, could be * sample[3]. */ if (sample[0] & 0x80 && !(last_sample[0] & 0x80)) { count = (int)(*sample) & 0x7fffffff; buffer = g_malloc(count); buflen = 0; for (i = 0; i < count; i++) { memcpy(buffer + buflen, last_sample, 4); buflen += 4; } } else { /* * Just a single sample, next sample * will probably be a count referring * to this -- but this one is still a * part of the stream. */ buffer = sample; buflen = 4; } } else { /* No compression. */ buffer = sample; buflen = 4; } if (num_channels < 4) { /* * Some channel groups may have been turned * off, to speed up transfer between the * hardware and the PC. Expand that here before * submitting it over the session bus -- * whatever is listening on the bus will be * expecting a full 32-bit sample, based on * the number of probes. */ j = 0; memset(tmp_sample, 0, 4); for (i = 0; i < 4; i++) { if (((flag_reg >> 2) & (1 << i)) == 0) { /* * This channel group was * enabled, copy from received * sample. */ tmp_sample[i] = sample[j++]; } } memcpy(sample, tmp_sample, 4); g_debug("ols: full sample 0x%.8x", (int) *sample); } /* the OLS sends its sample buffer backwards. * store it in reverse order here, so we can dump * this on the session bus later. */ offset = (limit_samples - num_transfers / num_channels) * 4; memcpy(raw_sample_buf + offset, sample, 4); if (buffer == sample) memcpy(last_sample, buffer, num_channels); else g_free(buffer); memset(sample, 0, 4); num_bytes = 0; } } else { /* * This is the main loop telling us a timeout was reached, or * we've acquired all the samples we asked for -- we're done. * Send the (properly-ordered) buffer to the frontend. */ if (trigger_at != -1) { /* a trigger was set up, so we need to tell the frontend * about it. */ if (trigger_at > 0) { /* there are pre-trigger samples, send those first */ packet.type = SR_DF_LOGIC; packet.length = trigger_at * 4; packet.unitsize = 4; packet.payload = raw_sample_buf; session_bus(user_data, &packet); } packet.type = SR_DF_TRIGGER; packet.length = 0; session_bus(user_data, &packet); packet.type = SR_DF_LOGIC; packet.length = (limit_samples * 4) - (trigger_at * 4); packet.unitsize = 4; packet.payload = raw_sample_buf + trigger_at * 4; session_bus(user_data, &packet); } else { packet.type = SR_DF_LOGIC; packet.length = limit_samples * 4; packet.unitsize = 4; packet.payload = raw_sample_buf; session_bus(user_data, &packet); } free(raw_sample_buf); serial_flush(fd); serial_close(fd); packet.type = SR_DF_END; packet.length = 0; session_bus(user_data, &packet); } return TRUE; } static int hw_start_acquisition(int device_index, gpointer session_device_id) { int i; struct sr_datafeed_packet *packet; struct sr_datafeed_header *header; struct sr_device_instance *sdi; uint32_t trigger_config[4]; uint32_t data; uint16_t readcount, delaycount; uint8_t changrp_mask; if (!(sdi = sr_get_device_instance(device_instances, device_index))) return SR_ERR; if (sdi->status != SR_ST_ACTIVE) return SR_ERR; readcount = limit_samples / 4; memset(trigger_config, 0, 16); trigger_config[num_stages-1] |= 0x08; if (trigger_mask[0]) { delaycount = readcount * (1 - capture_ratio / 100.0); trigger_at = (readcount - delaycount) * 4 - num_stages; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_0, reverse32(trigger_mask[0])) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_0, reverse32(trigger_value[0])) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_0, trigger_config[0]) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_1, reverse32(trigger_mask[1])) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_1, reverse32(trigger_value[1])) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_1, trigger_config[1]) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_2, reverse32(trigger_mask[2])) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_2, reverse32(trigger_value[2])) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_2, trigger_config[2]) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_3, reverse32(trigger_mask[3])) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_3, reverse32(trigger_value[3])) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_3, trigger_config[3]) != SR_OK) return SR_ERR; } else { if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_0, trigger_mask[0]) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_0, trigger_value[0]) != SR_OK) return SR_ERR; if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_0, 0x00000008) != SR_OK) return SR_ERR; delaycount = readcount; } set_configuration_samplerate(sdi, cur_samplerate); /* Send sample limit and pre/post-trigger capture ratio. */ data = ((readcount - 1) & 0xffff) << 16; data |= (delaycount - 1) & 0xffff; if (send_longcommand(sdi->serial->fd, CMD_CAPTURE_SIZE, reverse16(data)) != SR_OK) return SR_ERR; /* * Enable/disable channel groups in the flag register according to the * probe mask. */ changrp_mask = 0; for (i = 0; i < 4; i++) { if (probe_mask & (0xff << (i * 8))) changrp_mask |= (1 << i); } /* The flag register wants them here, and 1 means "disable channel". */ flag_reg |= ~(changrp_mask << 2) & 0x3c; flag_reg |= FLAG_FILTER; data = flag_reg << 24; if (send_longcommand(sdi->serial->fd, CMD_SET_FLAGS, data) != SR_OK) return SR_ERR; /* Start acquisition on the device. */ if (send_shortcommand(sdi->serial->fd, CMD_RUN) != SR_OK) return SR_ERR; source_add(sdi->serial->fd, G_IO_IN, -1, receive_data, session_device_id); /* Send header packet to the session bus. */ packet = g_malloc(sizeof(struct sr_datafeed_packet)); header = g_malloc(sizeof(struct sr_datafeed_header)); if (!packet || !header) return SR_ERR; packet->type = SR_DF_HEADER; packet->length = sizeof(struct sr_datafeed_header); packet->payload = (unsigned char *)header; header->feed_version = 1; gettimeofday(&header->starttime, NULL); header->samplerate = cur_samplerate; header->protocol_id = SR_PROTO_RAW; header->num_logic_probes = NUM_PROBES; header->num_analog_probes = 0; session_bus(session_device_id, packet); g_free(header); g_free(packet); return SR_OK; } static void hw_stop_acquisition(int device_index, gpointer session_device_id) { struct sr_datafeed_packet packet; /* Avoid compiler warnings. */ device_index = device_index; packet.type = SR_DF_END; packet.length = 0; session_bus(session_device_id, &packet); } struct sr_device_plugin ols_plugin_info = { "ols", "Openbench Logic Sniffer", 1, hw_init, hw_cleanup, hw_opendev, hw_closedev, hw_get_device_info, hw_get_status, hw_get_capabilities, hw_set_configuration, hw_start_acquisition, hw_stop_acquisition, };