/* * This file is part of the libsigrok project. * * Copyright (C) 2014 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ /* * UNI-T UT71x protocol parser. * * Communication parameters: Unidirectional, 2400/7o1 */ #include #include #include #include #include #include #include "libsigrok-internal.h" #define LOG_PREFIX "ut71x" /* * Exponents for the respective measurement mode. * * The Conrad/Voltcraft protocol descriptions have a typo (they suggest * index 0 for the 10A range (which is incorrect, it's range 1). */ static const int exponents[16][8] = { { -5, 0, 0, 0, 0, 0, 0, 0 }, /* AC mV */ { 0, -4, -3, -2, -1, 0, 0, 0 }, /* DC V */ { 0, -4, -3, -2, -1, 0, 0, 0 }, /* AC V */ { -5, 0, 0, 0, 0, 0, 0, 0 }, /* DC mV */ { 0, -2, -1, 0, 1, 2, 3, 0 }, /* Resistance */ { 0, -12, -11, -10, -9, -8, -7, -6 }, /* Capacitance */ { -1, 0, 0, 0, 0, 0, 0, 0 }, /* Temp (C) */ { -8, -7, 0, 0, 0, 0, 0, 0 }, /* uA */ { -6, -5, 0, 0, 0, 0, 0, 0 }, /* mA */ { 0, -3, 0, 0, 0, 0, 0, 0 }, /* 10A */ { -1, 0, 0, 0, 0, 0, 0, 0 }, /* Continuity */ { -4, 0, 0, 0, 0, 0, 0, 0 }, /* Diode */ { -3, -2, -1, 0, 1, 2, 3, 4 }, /* Frequency */ { -1, 0, 0, 0, 0, 0, 0, 0 }, /* Temp (F) */ { 0, 0, 0, 0, 0, 0, 0, 0 }, /* Power */ { -2, 0, 0, 0, 0, 0, 0, 0 }, /* Loop current */ }; static int parse_value(const uint8_t *buf, struct ut71x_info *info, float *result) { int i, intval, num_digits = 5; /* Bytes 0-4: Value (5 decimal digits) */ if (!strncmp((const char *)buf, "::0<:", 5)) { sr_spew("Over limit."); *result = INFINITY; return SR_OK; } else if (!strncmp((const char *)buf, ":<0::", 5)) { sr_spew("Under limit."); *result = INFINITY; return SR_OK; } else if (buf[4] == ':') { sr_dbg("4000 count mode, only 4 digits used."); num_digits = 4; } else if (!isdigit(buf[0]) || !isdigit(buf[1]) || !isdigit(buf[2]) || !isdigit(buf[3]) || !isdigit(buf[4])) { sr_dbg("Invalid digits: %02x %02x %02x %02x %02x (%c %c " "%c %c %c).", buf[0], buf[1], buf[2], buf[3], buf[4], buf[0], buf[1], buf[2], buf[3], buf[4]); return SR_ERR; } for (i = 0, intval = 0; i < num_digits; i++) intval = 10 * intval + (buf[i] - '0'); /* * For measurements that only have 4000 instead of 40000 counts * (resistance, continuity) we have to use an additional factor of 10. * * This seems to vary between DMMs. E.g. the Voltcraft VC920 and VC940 * have 4000 counts for resistance, whereas the Tenma 72-9380A, * 72-7730 and 72-7732 have 40000 counts for resistance. */ if (num_digits == 4) intval *= 10; /* Apply sign. */ intval *= info->is_sign ? -1 : 1; /* Note: The decimal point position will be parsed later. */ *result = (float)intval; sr_spew("The display value is %f.", *result); return SR_OK; } static int parse_range(const uint8_t *buf, float *floatval, int *exponent) { int idx, mode; idx = buf[5] - '0'; if (idx < 0 || idx > 7) { sr_dbg("Invalid range byte 0x%02x (idx 0x%02x).", buf[5], idx); return SR_ERR; } mode = buf[6] - '0'; if (mode < 0 || mode > 15) { sr_dbg("Invalid mode byte 0x%02x (idx 0x%02x).", buf[6], mode); return SR_ERR; } sr_spew("mode/idx = %d/%d", mode, idx); *exponent = exponents[mode][idx]; /* Apply respective exponent (mode-dependent) on the value. */ *floatval *= powf(10, *exponent); sr_dbg("Applying exponent %d, new value is %g.", *exponent, *floatval); return SR_OK; } static void parse_flags(const uint8_t *buf, struct ut71x_info *info) { /* Function byte */ switch (buf[6] - '0') { case 0: /* AC mV */ info->is_voltage = info->is_ac = TRUE; break; case 1: /* DC V */ info->is_voltage = info->is_dc = TRUE; break; case 2: /* AC V */ info->is_voltage = info->is_ac = TRUE; break; case 3: /* DC mV */ info->is_voltage = info->is_dc = TRUE; break; case 4: /* Resistance */ info->is_resistance = TRUE; break; case 5: /* Capacitance */ info->is_capacitance = TRUE; break; case 6: /* Temperature (Celsius) */ info->is_temperature = info->is_celsius = TRUE; break; case 7: /* uA */ info->is_current = info->is_dc = TRUE; break; case 8: /* mA */ info->is_current = info->is_dc = TRUE; break; case 9: /* 10A */ info->is_current = info->is_dc = TRUE; break; case 10: /* Continuity */ info->is_continuity = TRUE; break; case 11: /* Diode */ info->is_diode = TRUE; break; case 12: /* Frequency */ info->is_frequency = TRUE; break; case 13: /* Temperature (F) */ info->is_temperature = info->is_fahrenheit = TRUE; break; case 14: /* Power */ /* Note: Only available on UT71E (range 0-2500W). */ info->is_power = TRUE; break; case 15: /* DC loop current, percentage display (range 4-20mA) */ info->is_loop_current = TRUE; break; default: sr_dbg("Invalid function byte: 0x%02x.", buf[6]); break; } /* * State 1 byte: bit 0 = AC, bit 1 = DC * Either AC or DC or both or none can be set at the same time. */ info->is_ac = (buf[7] & (1 << 0)) != 0; info->is_dc = (buf[7] & (1 << 1)) != 0; /* * State 2 byte: bit 0 = auto, bit 1 = manual, bit 2 = sign * * The Conrad/Voltcraft protocol descriptions have a typo * (they suggest bit 3 as sign bit, which is incorrect). * * For modes where there's only one possible range (e.g. AC mV) * neither the "auto" nor the "manual" bits will be set. */ info->is_auto = (buf[8] & (1 << 0)) != 0; info->is_manual = (buf[8] & (1 << 1)) != 0; info->is_sign = (buf[8] & (1 << 2)) != 0; /* Note: "Frequency mode + sign bit" means "duty cycle mode". */ if (info->is_frequency && info->is_sign) { info->is_duty_cycle = TRUE; info->is_frequency = info->is_sign = FALSE; } } static void handle_flags(struct sr_datafeed_analog *analog, float *floatval, const struct ut71x_info *info) { /* Measurement modes */ if (info->is_voltage) { analog->meaning->mq = SR_MQ_VOLTAGE; analog->meaning->unit = SR_UNIT_VOLT; } if (info->is_current) { analog->meaning->mq = SR_MQ_CURRENT; analog->meaning->unit = SR_UNIT_AMPERE; } if (info->is_resistance) { analog->meaning->mq = SR_MQ_RESISTANCE; analog->meaning->unit = SR_UNIT_OHM; } if (info->is_frequency) { analog->meaning->mq = SR_MQ_FREQUENCY; analog->meaning->unit = SR_UNIT_HERTZ; } if (info->is_capacitance) { analog->meaning->mq = SR_MQ_CAPACITANCE; analog->meaning->unit = SR_UNIT_FARAD; } if (info->is_temperature && info->is_celsius) { analog->meaning->mq = SR_MQ_TEMPERATURE; analog->meaning->unit = SR_UNIT_CELSIUS; } if (info->is_temperature && info->is_fahrenheit) { analog->meaning->mq = SR_MQ_TEMPERATURE; analog->meaning->unit = SR_UNIT_FAHRENHEIT; } if (info->is_continuity) { analog->meaning->mq = SR_MQ_CONTINUITY; analog->meaning->unit = SR_UNIT_BOOLEAN; *floatval = (*floatval < 0.0 || *floatval > 60.0) ? 0.0 : 1.0; } if (info->is_diode) { analog->meaning->mq = SR_MQ_VOLTAGE; analog->meaning->unit = SR_UNIT_VOLT; } if (info->is_duty_cycle) { analog->meaning->mq = SR_MQ_DUTY_CYCLE; analog->meaning->unit = SR_UNIT_PERCENTAGE; } if (info->is_power) { analog->meaning->mq = SR_MQ_POWER; analog->meaning->unit = SR_UNIT_WATT; } if (info->is_loop_current) { /* 4mA = 0%, 20mA = 100% */ analog->meaning->mq = SR_MQ_CURRENT; analog->meaning->unit = SR_UNIT_PERCENTAGE; } /* Measurement related flags */ if (info->is_ac) analog->meaning->mqflags |= SR_MQFLAG_AC; if (info->is_dc) analog->meaning->mqflags |= SR_MQFLAG_DC; if (info->is_ac) /* All AC modes do True-RMS measurements. */ analog->meaning->mqflags |= SR_MQFLAG_RMS; if (info->is_auto) analog->meaning->mqflags |= SR_MQFLAG_AUTORANGE; if (info->is_diode) analog->meaning->mqflags |= SR_MQFLAG_DIODE | SR_MQFLAG_DC; } static gboolean flags_valid(const struct ut71x_info *info) { int count; /* Does the packet "measure" more than one type of value? */ count = (info->is_voltage) ? 1 : 0; count += (info->is_current) ? 1 : 0; count += (info->is_resistance) ? 1 : 0; count += (info->is_capacitance) ? 1 : 0; count += (info->is_frequency) ? 1 : 0; count += (info->is_temperature) ? 1 : 0; count += (info->is_continuity) ? 1 : 0; count += (info->is_diode) ? 1 : 0; count += (info->is_power) ? 1 : 0; count += (info->is_loop_current) ? 1 : 0; if (count > 1) { sr_dbg("More than one measurement type detected in packet."); return FALSE; } /* Auto and manual can't be active at the same time. */ if (info->is_auto && info->is_manual) { sr_dbg("Auto and manual modes are both active."); return FALSE; } return TRUE; } SR_PRIV gboolean sr_ut71x_packet_valid(const uint8_t *buf) { struct ut71x_info info; memset(&info, 0, sizeof(struct ut71x_info)); if (buf[9] != '\r' || buf[10] != '\n') return FALSE; parse_flags(buf, &info); return flags_valid(&info); } SR_PRIV int sr_ut71x_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info) { int ret, exponent = 0; struct ut71x_info *info_local; info_local = info; memset(info_local, 0, sizeof(struct ut71x_info)); if (!sr_ut71x_packet_valid(buf)) return SR_ERR; parse_flags(buf, info_local); if ((ret = parse_value(buf, info, floatval)) != SR_OK) { sr_dbg("Error parsing value: %d.", ret); return ret; } if ((ret = parse_range(buf, floatval, &exponent)) != SR_OK) return ret; handle_flags(analog, floatval, info); analog->encoding->digits = -exponent; analog->spec->spec_digits = -exponent; return SR_OK; }