/* * This file is part of the libsigrok project. * * Copyright (C) 2010-2012 Håvard Espeland , * Copyright (C) 2010 Martin Stensgård * Copyright (C) 2010 Carl Henrik Lunde * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* * ASIX SIGMA/SIGMA2 logic analyzer driver */ #include #include #include #include #include "libsigrok.h" #include "libsigrok-internal.h" #include "asix-sigma.h" #define USB_VENDOR 0xa600 #define USB_PRODUCT 0xa000 #define USB_DESCRIPTION "ASIX SIGMA" #define USB_VENDOR_NAME "ASIX" #define USB_MODEL_NAME "SIGMA" #define TRIGGER_TYPE "rf10" SR_PRIV struct sr_dev_driver asix_sigma_driver_info; static struct sr_dev_driver *di = &asix_sigma_driver_info; static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data); /* * The ASIX Sigma supports arbitrary integer frequency divider in * the 50MHz mode. The divider is in range 1...256 , allowing for * very precise sampling rate selection. This driver supports only * a subset of the sampling rates. */ static const uint64_t samplerates[] = { SR_KHZ(200), /* div=250 */ SR_KHZ(250), /* div=200 */ SR_KHZ(500), /* div=100 */ SR_MHZ(1), /* div=50 */ SR_MHZ(5), /* div=10 */ SR_MHZ(10), /* div=5 */ SR_MHZ(25), /* div=2 */ SR_MHZ(50), /* div=1 */ SR_MHZ(100), /* Special FW needed */ SR_MHZ(200), /* Special FW needed */ }; /* * Channel numbers seem to go from 1-16, according to this image: * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg * (the cable has two additional GND pins, and a TI and TO pin) */ static const char *channel_names[] = { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", }; static const int32_t hwcaps[] = { SR_CONF_LOGIC_ANALYZER, SR_CONF_SAMPLERATE, SR_CONF_TRIGGER_TYPE, SR_CONF_CAPTURE_RATIO, SR_CONF_LIMIT_MSEC, SR_CONF_LIMIT_SAMPLES, }; static const char *sigma_firmware_files[] = { /* 50 MHz, supports 8 bit fractions */ FIRMWARE_DIR "/asix-sigma-50.fw", /* 100 MHz */ FIRMWARE_DIR "/asix-sigma-100.fw", /* 200 MHz */ FIRMWARE_DIR "/asix-sigma-200.fw", /* Synchronous clock from pin */ FIRMWARE_DIR "/asix-sigma-50sync.fw", /* Frequency counter */ FIRMWARE_DIR "/asix-sigma-phasor.fw", }; static int sigma_read(void *buf, size_t size, struct dev_context *devc) { int ret; ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size); if (ret < 0) { sr_err("ftdi_read_data failed: %s", ftdi_get_error_string(&devc->ftdic)); } return ret; } static int sigma_write(void *buf, size_t size, struct dev_context *devc) { int ret; ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size); if (ret < 0) { sr_err("ftdi_write_data failed: %s", ftdi_get_error_string(&devc->ftdic)); } else if ((size_t) ret != size) { sr_err("ftdi_write_data did not complete write."); } return ret; } static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len, struct dev_context *devc) { size_t i; uint8_t buf[len + 2]; int idx = 0; buf[idx++] = REG_ADDR_LOW | (reg & 0xf); buf[idx++] = REG_ADDR_HIGH | (reg >> 4); for (i = 0; i < len; ++i) { buf[idx++] = REG_DATA_LOW | (data[i] & 0xf); buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4); } return sigma_write(buf, idx, devc); } static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc) { return sigma_write_register(reg, &value, 1, devc); } static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len, struct dev_context *devc) { uint8_t buf[3]; buf[0] = REG_ADDR_LOW | (reg & 0xf); buf[1] = REG_ADDR_HIGH | (reg >> 4); buf[2] = REG_READ_ADDR; sigma_write(buf, sizeof(buf), devc); return sigma_read(data, len, devc); } static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc) { uint8_t value; if (1 != sigma_read_register(reg, &value, 1, devc)) { sr_err("sigma_get_register: 1 byte expected"); return 0; } return value; } static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos, struct dev_context *devc) { uint8_t buf[] = { REG_ADDR_LOW | READ_TRIGGER_POS_LOW, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG, }; uint8_t result[6]; sigma_write(buf, sizeof(buf), devc); sigma_read(result, sizeof(result), devc); *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16); *stoppos = result[3] | (result[4] << 8) | (result[5] << 16); /* Not really sure why this must be done, but according to spec. */ if ((--*stoppos & 0x1ff) == 0x1ff) stoppos -= 64; if ((*--triggerpos & 0x1ff) == 0x1ff) triggerpos -= 64; return 1; } static int sigma_read_dram(uint16_t startchunk, size_t numchunks, uint8_t *data, struct dev_context *devc) { size_t i; uint8_t buf[4096]; int idx = 0; /* Send the startchunk. Index start with 1. */ buf[0] = startchunk >> 8; buf[1] = startchunk & 0xff; sigma_write_register(WRITE_MEMROW, buf, 2, devc); /* Read the DRAM. */ buf[idx++] = REG_DRAM_BLOCK; buf[idx++] = REG_DRAM_WAIT_ACK; for (i = 0; i < numchunks; ++i) { /* Alternate bit to copy from DRAM to cache. */ if (i != (numchunks - 1)) buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4); buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4); if (i != (numchunks - 1)) buf[idx++] = REG_DRAM_WAIT_ACK; } sigma_write(buf, idx, devc); return sigma_read(data, numchunks * CHUNK_SIZE, devc); } /* Upload trigger look-up tables to Sigma. */ static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc) { int i; uint8_t tmp[2]; uint16_t bit; /* Transpose the table and send to Sigma. */ for (i = 0; i < 16; ++i) { bit = 1 << i; tmp[0] = tmp[1] = 0; if (lut->m2d[0] & bit) tmp[0] |= 0x01; if (lut->m2d[1] & bit) tmp[0] |= 0x02; if (lut->m2d[2] & bit) tmp[0] |= 0x04; if (lut->m2d[3] & bit) tmp[0] |= 0x08; if (lut->m3 & bit) tmp[0] |= 0x10; if (lut->m3s & bit) tmp[0] |= 0x20; if (lut->m4 & bit) tmp[0] |= 0x40; if (lut->m0d[0] & bit) tmp[1] |= 0x01; if (lut->m0d[1] & bit) tmp[1] |= 0x02; if (lut->m0d[2] & bit) tmp[1] |= 0x04; if (lut->m0d[3] & bit) tmp[1] |= 0x08; if (lut->m1d[0] & bit) tmp[1] |= 0x10; if (lut->m1d[1] & bit) tmp[1] |= 0x20; if (lut->m1d[2] & bit) tmp[1] |= 0x40; if (lut->m1d[3] & bit) tmp[1] |= 0x80; sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp), devc); sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc); } /* Send the parameters */ sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params, sizeof(lut->params), devc); return SR_OK; } static void clear_helper(void *priv) { struct dev_context *devc; devc = priv; ftdi_deinit(&devc->ftdic); } static int dev_clear(void) { return std_dev_clear(di, clear_helper); } static int init(struct sr_context *sr_ctx) { return std_init(sr_ctx, di, LOG_PREFIX); } static GSList *scan(GSList *options) { struct sr_dev_inst *sdi; struct sr_channel *ch; struct drv_context *drvc; struct dev_context *devc; GSList *devices; struct ftdi_device_list *devlist; char serial_txt[10]; uint32_t serial; int ret; unsigned int i; (void)options; drvc = di->priv; devices = NULL; if (!(devc = g_try_malloc(sizeof(struct dev_context)))) { sr_err("%s: devc malloc failed", __func__); return NULL; } ftdi_init(&devc->ftdic); /* Look for SIGMAs. */ if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist, USB_VENDOR, USB_PRODUCT)) <= 0) { if (ret < 0) sr_err("ftdi_usb_find_all(): %d", ret); goto free; } /* Make sure it's a version 1 or 2 SIGMA. */ ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0, serial_txt, sizeof(serial_txt)); sscanf(serial_txt, "%x", &serial); if (serial < 0xa6010000 || serial > 0xa602ffff) { sr_err("Only SIGMA and SIGMA2 are supported " "in this version of libsigrok."); goto free; } sr_info("Found ASIX SIGMA - Serial: %s", serial_txt); devc->cur_samplerate = samplerates[0]; devc->period_ps = 0; devc->limit_msec = 0; devc->cur_firmware = -1; devc->num_channels = 0; devc->samples_per_event = 0; devc->capture_ratio = 50; devc->use_triggers = 0; /* Register SIGMA device. */ if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME, USB_MODEL_NAME, NULL))) { sr_err("%s: sdi was NULL", __func__); goto free; } sdi->driver = di; for (i = 0; i < ARRAY_SIZE(channel_names); i++) { ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE, channel_names[i]); if (!ch) return NULL; sdi->channels = g_slist_append(sdi->channels, ch); } devices = g_slist_append(devices, sdi); drvc->instances = g_slist_append(drvc->instances, sdi); sdi->priv = devc; /* We will open the device again when we need it. */ ftdi_list_free(&devlist); return devices; free: ftdi_deinit(&devc->ftdic); g_free(devc); return NULL; } static GSList *dev_list(void) { return ((struct drv_context *)(di->priv))->instances; } /* * Configure the FPGA for bitbang mode. * This sequence is documented in section 2. of the ASIX Sigma programming * manual. This sequence is necessary to configure the FPGA in the Sigma * into Bitbang mode, in which it can be programmed with the firmware. */ static int sigma_fpga_init_bitbang(struct dev_context *devc) { uint8_t suicide[] = { 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84, }; uint8_t init_array[] = { 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, }; int i, ret, timeout = 10000; uint8_t data; /* Section 2. part 1), do the FPGA suicide. */ sigma_write(suicide, sizeof(suicide), devc); sigma_write(suicide, sizeof(suicide), devc); sigma_write(suicide, sizeof(suicide), devc); sigma_write(suicide, sizeof(suicide), devc); /* Section 2. part 2), do pulse on D1. */ sigma_write(init_array, sizeof(init_array), devc); ftdi_usb_purge_buffers(&devc->ftdic); /* Wait until the FPGA asserts D6/INIT_B. */ for (i = 0; i < timeout; i++) { ret = sigma_read(&data, 1, devc); if (ret < 0) return ret; /* Test if pin D6 got asserted. */ if (data & (1 << 5)) return 0; /* The D6 was not asserted yet, wait a bit. */ usleep(10000); } return SR_ERR_TIMEOUT; } /* * Configure the FPGA for logic-analyzer mode. */ static int sigma_fpga_init_la(struct dev_context *devc) { /* Initialize the logic analyzer mode. */ uint8_t logic_mode_start[] = { REG_ADDR_LOW | (READ_ID & 0xf), REG_ADDR_HIGH | (READ_ID >> 8), REG_READ_ADDR, /* Read ID register. */ REG_ADDR_LOW | (WRITE_TEST & 0xf), REG_DATA_LOW | 0x5, REG_DATA_HIGH_WRITE | 0x5, REG_READ_ADDR, /* Read scratch register. */ REG_DATA_LOW | 0xa, REG_DATA_HIGH_WRITE | 0xa, REG_READ_ADDR, /* Read scratch register. */ REG_ADDR_LOW | (WRITE_MODE & 0xf), REG_DATA_LOW | 0x0, REG_DATA_HIGH_WRITE | 0x8, }; uint8_t result[3]; int ret; /* Initialize the logic analyzer mode. */ sigma_write(logic_mode_start, sizeof(logic_mode_start), devc); /* Expect a 3 byte reply since we issued three READ requests. */ ret = sigma_read(result, 3, devc); if (ret != 3) goto err; if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) goto err; return SR_OK; err: sr_err("Configuration failed. Invalid reply received."); return SR_ERR; } /* * Read the firmware from a file and transform it into a series of bitbang * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d * by the caller of this function. */ static int sigma_fw_2_bitbang(const char *filename, uint8_t **bb_cmd, gsize *bb_cmd_size) { GMappedFile *file; GError *error; gsize i, file_size, bb_size; gchar *firmware; uint8_t *bb_stream, *bbs; uint32_t imm; int bit, v; int ret = SR_OK; /* * Map the file and make the mapped buffer writable. * NOTE: Using writable=TRUE does _NOT_ mean that file that is mapped * will be modified. It will not be modified until someone uses * g_file_set_contents() on it. */ error = NULL; file = g_mapped_file_new(filename, TRUE, &error); g_assert_no_error(error); file_size = g_mapped_file_get_length(file); firmware = g_mapped_file_get_contents(file); g_assert(firmware); /* Weird magic transformation below, I have no idea what it does. */ imm = 0x3f6df2ab; for (i = 0; i < file_size; i++) { imm = (imm + 0xa853753) % 177 + (imm * 0x8034052); firmware[i] ^= imm & 0xff; } /* * Now that the firmware is "transformed", we will transcribe the * firmware blob into a sequence of toggles of the Dx wires. This * sequence will be fed directly into the Sigma, which must be in * the FPGA bitbang programming mode. */ /* Each bit of firmware is transcribed as two toggles of Dx wires. */ bb_size = file_size * 8 * 2; bb_stream = (uint8_t *)g_try_malloc(bb_size); if (!bb_stream) { sr_err("%s: Failed to allocate bitbang stream", __func__); ret = SR_ERR_MALLOC; goto exit; } bbs = bb_stream; for (i = 0; i < file_size; i++) { for (bit = 7; bit >= 0; bit--) { v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00; *bbs++ = v | 0x01; *bbs++ = v; } } /* The transformation completed successfully, return the result. */ *bb_cmd = bb_stream; *bb_cmd_size = bb_size; exit: g_mapped_file_unref(file); return ret; } static int upload_firmware(int firmware_idx, struct dev_context *devc) { int ret; unsigned char *buf; unsigned char pins; size_t buf_size; const char *firmware = sigma_firmware_files[firmware_idx]; struct ftdi_context *ftdic = &devc->ftdic; /* Make sure it's an ASIX SIGMA. */ ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL); if (ret < 0) { sr_err("ftdi_usb_open failed: %s", ftdi_get_error_string(ftdic)); return 0; } ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG); if (ret < 0) { sr_err("ftdi_set_bitmode failed: %s", ftdi_get_error_string(ftdic)); return 0; } /* Four times the speed of sigmalogan - Works well. */ ret = ftdi_set_baudrate(ftdic, 750000); if (ret < 0) { sr_err("ftdi_set_baudrate failed: %s", ftdi_get_error_string(ftdic)); return 0; } /* Initialize the FPGA for firmware upload. */ ret = sigma_fpga_init_bitbang(devc); if (ret) return ret; /* Prepare firmware. */ ret = sigma_fw_2_bitbang(firmware, &buf, &buf_size); if (ret != SR_OK) { sr_err("An error occured while reading the firmware: %s", firmware); return ret; } /* Upload firmare. */ sr_info("Uploading firmware file '%s'.", firmware); sigma_write(buf, buf_size, devc); g_free(buf); ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET); if (ret < 0) { sr_err("ftdi_set_bitmode failed: %s", ftdi_get_error_string(ftdic)); return SR_ERR; } ftdi_usb_purge_buffers(ftdic); /* Discard garbage. */ while (sigma_read(&pins, 1, devc) == 1) ; /* Initialize the FPGA for logic-analyzer mode. */ ret = sigma_fpga_init_la(devc); if (ret != SR_OK) return ret; devc->cur_firmware = firmware_idx; sr_info("Firmware uploaded."); return SR_OK; } static int dev_open(struct sr_dev_inst *sdi) { struct dev_context *devc; int ret; devc = sdi->priv; /* Make sure it's an ASIX SIGMA. */ if ((ret = ftdi_usb_open_desc(&devc->ftdic, USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) { sr_err("ftdi_usb_open failed: %s", ftdi_get_error_string(&devc->ftdic)); return 0; } sdi->status = SR_ST_ACTIVE; return SR_OK; } static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate) { struct dev_context *devc; unsigned int i; int ret; devc = sdi->priv; ret = SR_OK; for (i = 0; i < ARRAY_SIZE(samplerates); i++) { if (samplerates[i] == samplerate) break; } if (samplerates[i] == 0) return SR_ERR_SAMPLERATE; if (samplerate <= SR_MHZ(50)) { ret = upload_firmware(0, devc); devc->num_channels = 16; } if (samplerate == SR_MHZ(100)) { ret = upload_firmware(1, devc); devc->num_channels = 8; } else if (samplerate == SR_MHZ(200)) { ret = upload_firmware(2, devc); devc->num_channels = 4; } devc->cur_samplerate = samplerate; devc->period_ps = 1000000000000ULL / samplerate; devc->samples_per_event = 16 / devc->num_channels; devc->state.state = SIGMA_IDLE; return ret; } /* * In 100 and 200 MHz mode, only a single pin rising/falling can be * set as trigger. In other modes, two rising/falling triggers can be set, * in addition to value/mask trigger for any number of channels. * * The Sigma supports complex triggers using boolean expressions, but this * has not been implemented yet. */ static int configure_channels(const struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; const struct sr_channel *ch; const GSList *l; int trigger_set = 0; int channelbit; memset(&devc->trigger, 0, sizeof(struct sigma_trigger)); for (l = sdi->channels; l; l = l->next) { ch = (struct sr_channel *)l->data; channelbit = 1 << (ch->index); if (!ch->enabled || !ch->trigger) continue; if (devc->cur_samplerate >= SR_MHZ(100)) { /* Fast trigger support. */ if (trigger_set) { sr_err("Only a single pin trigger in 100 and " "200MHz mode is supported."); return SR_ERR; } if (ch->trigger[0] == 'f') devc->trigger.fallingmask |= channelbit; else if (ch->trigger[0] == 'r') devc->trigger.risingmask |= channelbit; else { sr_err("Only rising/falling trigger in 100 " "and 200MHz mode is supported."); return SR_ERR; } ++trigger_set; } else { /* Simple trigger support (event). */ if (ch->trigger[0] == '1') { devc->trigger.simplevalue |= channelbit; devc->trigger.simplemask |= channelbit; } else if (ch->trigger[0] == '0') { devc->trigger.simplevalue &= ~channelbit; devc->trigger.simplemask |= channelbit; } else if (ch->trigger[0] == 'f') { devc->trigger.fallingmask |= channelbit; ++trigger_set; } else if (ch->trigger[0] == 'r') { devc->trigger.risingmask |= channelbit; ++trigger_set; } /* * Actually, Sigma supports 2 rising/falling triggers, * but they are ORed and the current trigger syntax * does not permit ORed triggers. */ if (trigger_set > 1) { sr_err("Only 1 rising/falling trigger " "is supported."); return SR_ERR; } } if (trigger_set) devc->use_triggers = 1; } return SR_OK; } static int dev_close(struct sr_dev_inst *sdi) { struct dev_context *devc; devc = sdi->priv; /* TODO */ if (sdi->status == SR_ST_ACTIVE) ftdi_usb_close(&devc->ftdic); sdi->status = SR_ST_INACTIVE; return SR_OK; } static int cleanup(void) { return dev_clear(); } static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; (void)cg; switch (id) { case SR_CONF_SAMPLERATE: if (sdi) { devc = sdi->priv; *data = g_variant_new_uint64(devc->cur_samplerate); } else return SR_ERR; break; default: return SR_ERR_NA; } return SR_OK; } static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; uint64_t num_samples; int ret = 0; (void)cg; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; devc = sdi->priv; switch (id) { case SR_CONF_SAMPLERATE: ret = set_samplerate(sdi, g_variant_get_uint64(data)); break; case SR_CONF_LIMIT_MSEC: devc->limit_msec = g_variant_get_uint64(data); if (devc->limit_msec > 0) ret = SR_OK; else ret = SR_ERR; break; case SR_CONF_LIMIT_SAMPLES: num_samples = g_variant_get_uint64(data); devc->limit_msec = num_samples * 1000 / devc->cur_samplerate; break; case SR_CONF_CAPTURE_RATIO: devc->capture_ratio = g_variant_get_uint64(data); if (devc->capture_ratio < 0 || devc->capture_ratio > 100) ret = SR_ERR; else ret = SR_OK; break; default: ret = SR_ERR_NA; } return ret; } static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { GVariant *gvar; GVariantBuilder gvb; (void)sdi; (void)cg; switch (key) { case SR_CONF_DEVICE_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t)); break; case SR_CONF_SAMPLERATE: g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates, ARRAY_SIZE(samplerates), sizeof(uint64_t)); g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_TRIGGER_TYPE: *data = g_variant_new_string(TRIGGER_TYPE); break; default: return SR_ERR_NA; } return SR_OK; } /* Software trigger to determine exact trigger position. */ static int get_trigger_offset(uint8_t *samples, uint16_t last_sample, struct sigma_trigger *t) { int i; uint16_t sample = 0; for (i = 0; i < 8; ++i) { if (i > 0) last_sample = sample; sample = samples[2 * i] | (samples[2 * i + 1] << 8); /* Simple triggers. */ if ((sample & t->simplemask) != t->simplevalue) continue; /* Rising edge. */ if (((last_sample & t->risingmask) != 0) || ((sample & t->risingmask) != t->risingmask)) continue; /* Falling edge. */ if ((last_sample & t->fallingmask) != t->fallingmask || (sample & t->fallingmask) != 0) continue; break; } /* If we did not match, return original trigger pos. */ return i & 0x7; } /* * Return the timestamp of "DRAM cluster". */ static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster) { return (cluster->timestamp_hi << 8) | cluster->timestamp_lo; } static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster, unsigned int events_in_cluster, unsigned int triggered, struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; struct sigma_state *ss = &devc->state; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; uint16_t tsdiff, ts; uint8_t samples[2048]; unsigned int i; ts = sigma_dram_cluster_ts(dram_cluster); tsdiff = ts - ss->lastts; ss->lastts = ts; packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.unitsize = 2; logic.data = samples; /* * First of all, send Sigrok a copy of the last sample from * previous cluster as many times as needed to make up for * the differential characteristics of data we get from the * Sigma. Sigrok needs one sample of data per period. * * One DRAM cluster contains a timestamp and seven samples, * the units of timestamp are "devc->period_ps" , the first * sample in the cluster happens at the time of the timestamp * and the remaining samples happen at timestamp +1...+6 . */ for (ts = 0; ts < tsdiff - (EVENTS_PER_CLUSTER - 1); ts++) { i = ts % 1024; samples[2 * i + 0] = ss->lastsample & 0xff; samples[2 * i + 1] = ss->lastsample >> 8; /* * If we have 1024 samples ready or we're at the * end of submitting the padding samples, submit * the packet to Sigrok. */ if ((i == 1023) || (ts == (tsdiff - EVENTS_PER_CLUSTER))) { logic.length = (i + 1) * logic.unitsize; sr_session_send(devc->cb_data, &packet); } } /* * Parse the samples in current cluster and prepare them * to be submitted to Sigrok. */ for (i = 0; i < events_in_cluster; i++) { samples[2 * i + 1] = dram_cluster->samples[i].sample_lo; samples[2 * i + 0] = dram_cluster->samples[i].sample_hi; } /* Send data up to trigger point (if triggered). */ int trigger_offset = 0; if (triggered) { /* * Trigger is not always accurate to sample because of * pipeline delay. However, it always triggers before * the actual event. We therefore look at the next * samples to pinpoint the exact position of the trigger. */ trigger_offset = get_trigger_offset(samples, ss->lastsample, &devc->trigger); if (trigger_offset > 0) { packet.type = SR_DF_LOGIC; logic.length = trigger_offset * logic.unitsize; sr_session_send(devc->cb_data, &packet); events_in_cluster -= trigger_offset; } /* Only send trigger if explicitly enabled. */ if (devc->use_triggers) { packet.type = SR_DF_TRIGGER; sr_session_send(devc->cb_data, &packet); } } if (events_in_cluster > 0) { packet.type = SR_DF_LOGIC; logic.length = events_in_cluster * logic.unitsize; logic.data = samples + (trigger_offset * logic.unitsize); sr_session_send(devc->cb_data, &packet); } ss->lastsample = samples[2 * (events_in_cluster - 1) + 0] | (samples[2 * (events_in_cluster - 1) + 1] << 8); } /* * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster. * Each event is 20ns apart, and can contain multiple samples. * * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart. * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart. * For 50 MHz and below, events contain one sample for each channel, * spread 20 ns apart. */ static int decode_chunk_ts(struct sigma_dram_line *dram_line, uint16_t events_in_line, uint32_t trigger_event, void *cb_data) { struct sigma_dram_cluster *dram_cluster; struct sr_dev_inst *sdi = cb_data; struct dev_context *devc = sdi->priv; unsigned int clusters_in_line = (events_in_line + (EVENTS_PER_CLUSTER - 1)) / EVENTS_PER_CLUSTER; unsigned int events_in_cluster; unsigned int i; uint32_t trigger_cluster = ~0, triggered = 0; /* Check if trigger is in this chunk. */ if (trigger_event < (64 * 7)) { if (devc->cur_samplerate <= SR_MHZ(50)) { trigger_event -= MIN(EVENTS_PER_CLUSTER - 1, trigger_event); } /* Find in which cluster the trigger occured. */ trigger_cluster = trigger_event / EVENTS_PER_CLUSTER; } /* For each full DRAM cluster. */ for (i = 0; i < clusters_in_line; i++) { dram_cluster = &dram_line->cluster[i]; /* The last cluster might not be full. */ if ((i == clusters_in_line - 1) && (events_in_line % EVENTS_PER_CLUSTER)) { events_in_cluster = events_in_line % EVENTS_PER_CLUSTER; } else { events_in_cluster = EVENTS_PER_CLUSTER; } triggered = (i == trigger_cluster); sigma_decode_dram_cluster(dram_cluster, events_in_cluster, triggered, sdi); } return SR_OK; } static int download_capture(struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; const int chunks_per_read = 32; struct sigma_dram_line *dram_line; int bufsz; uint32_t stoppos, triggerpos; struct sr_datafeed_packet packet; uint8_t modestatus; uint32_t i; uint32_t dl_lines_total, dl_lines_curr, dl_lines_done; uint32_t dl_events_in_line = 64 * 7; uint32_t trg_line = ~0, trg_event = ~0; dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line)); if (!dram_line) return FALSE; sr_info("Downloading sample data."); /* Stop acquisition. */ sigma_set_register(WRITE_MODE, 0x11, devc); /* Set SDRAM Read Enable. */ sigma_set_register(WRITE_MODE, 0x02, devc); /* Get the current position. */ sigma_read_pos(&stoppos, &triggerpos, devc); /* Check if trigger has fired. */ modestatus = sigma_get_register(READ_MODE, devc); if (modestatus & 0x20) { trg_line = triggerpos >> 9; trg_event = triggerpos & 0x1ff; } /* * Determine how many 1024b "DRAM lines" do we need to read from the * Sigma so we have a complete set of samples. Note that the last * line can be only partial, containing less than 64 clusters. */ dl_lines_total = (stoppos >> 9) + 1; dl_lines_done = 0; while (dl_lines_total > dl_lines_done) { /* We can download only up-to 32 DRAM lines in one go! */ dl_lines_curr = MIN(chunks_per_read, dl_lines_total); bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr, (uint8_t *)dram_line, devc); /* TODO: Check bufsz. For now, just avoid compiler warnings. */ (void)bufsz; /* This is the first DRAM line, so find the initial timestamp. */ if (dl_lines_done == 0) { devc->state.lastts = sigma_dram_cluster_ts(&dram_line[0].cluster[0]); devc->state.lastsample = 0; } for (i = 0; i < dl_lines_curr; i++) { uint32_t trigger_event = ~0; /* The last "DRAM line" can be only partially full. */ if (dl_lines_done + i == dl_lines_total - 1) dl_events_in_line = stoppos & 0x1ff; /* Test if the trigger happened on this line. */ if (dl_lines_done + i == trg_line) trigger_event = trg_event; decode_chunk_ts(dram_line + i, dl_events_in_line, trigger_event, sdi); } dl_lines_done += dl_lines_curr; } /* All done. */ packet.type = SR_DF_END; sr_session_send(sdi, &packet); dev_acquisition_stop(sdi, sdi); g_free(dram_line); return TRUE; } /* * Handle the Sigma when in CAPTURE mode. This function checks: * - Sampling time ended * - DRAM capacity overflow * This function triggers download of the samples from Sigma * in case either of the above conditions is true. */ static int sigma_capture_mode(struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; uint64_t running_msec; struct timeval tv; uint32_t stoppos, triggerpos; /* Check if the selected sampling duration passed. */ gettimeofday(&tv, 0); running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 + (tv.tv_usec - devc->start_tv.tv_usec) / 1000; if (running_msec >= devc->limit_msec) return download_capture(sdi); /* Get the position in DRAM to which the FPGA is writing now. */ sigma_read_pos(&stoppos, &triggerpos, devc); /* Test if DRAM is full and if so, download the data. */ if ((stoppos >> 9) == 32767) return download_capture(sdi); return TRUE; } static int receive_data(int fd, int revents, void *cb_data) { struct sr_dev_inst *sdi; struct dev_context *devc; (void)fd; (void)revents; sdi = cb_data; devc = sdi->priv; if (devc->state.state == SIGMA_IDLE) return TRUE; if (devc->state.state == SIGMA_CAPTURE) return sigma_capture_mode(sdi); return TRUE; } /* Build a LUT entry used by the trigger functions. */ static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry) { int i, j, k, bit; /* For each quad channel. */ for (i = 0; i < 4; ++i) { entry[i] = 0xffff; /* For each bit in LUT. */ for (j = 0; j < 16; ++j) /* For each channel in quad. */ for (k = 0; k < 4; ++k) { bit = 1 << (i * 4 + k); /* Set bit in entry */ if ((mask & bit) && ((!(value & bit)) != (!(j & (1 << k))))) entry[i] &= ~(1 << j); } } } /* Add a logical function to LUT mask. */ static void add_trigger_function(enum triggerop oper, enum triggerfunc func, int index, int neg, uint16_t *mask) { int i, j; int x[2][2], tmp, a, b, aset, bset, rset; memset(x, 0, 4 * sizeof(int)); /* Trigger detect condition. */ switch (oper) { case OP_LEVEL: x[0][1] = 1; x[1][1] = 1; break; case OP_NOT: x[0][0] = 1; x[1][0] = 1; break; case OP_RISE: x[0][1] = 1; break; case OP_FALL: x[1][0] = 1; break; case OP_RISEFALL: x[0][1] = 1; x[1][0] = 1; break; case OP_NOTRISE: x[1][1] = 1; x[0][0] = 1; x[1][0] = 1; break; case OP_NOTFALL: x[1][1] = 1; x[0][0] = 1; x[0][1] = 1; break; case OP_NOTRISEFALL: x[1][1] = 1; x[0][0] = 1; break; } /* Transpose if neg is set. */ if (neg) { for (i = 0; i < 2; ++i) { for (j = 0; j < 2; ++j) { tmp = x[i][j]; x[i][j] = x[1-i][1-j]; x[1-i][1-j] = tmp; } } } /* Update mask with function. */ for (i = 0; i < 16; ++i) { a = (i >> (2 * index + 0)) & 1; b = (i >> (2 * index + 1)) & 1; aset = (*mask >> i) & 1; bset = x[b][a]; if (func == FUNC_AND || func == FUNC_NAND) rset = aset & bset; else if (func == FUNC_OR || func == FUNC_NOR) rset = aset | bset; else if (func == FUNC_XOR || func == FUNC_NXOR) rset = aset ^ bset; if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR) rset = !rset; *mask &= ~(1 << i); if (rset) *mask |= 1 << i; } } /* * Build trigger LUTs used by 50 MHz and lower sample rates for supporting * simple pin change and state triggers. Only two transitions (rise/fall) can be * set at any time, but a full mask and value can be set (0/1). */ static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc) { int i,j; uint16_t masks[2] = { 0, 0 }; memset(lut, 0, sizeof(struct triggerlut)); /* Contant for simple triggers. */ lut->m4 = 0xa000; /* Value/mask trigger support. */ build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask, lut->m2d); /* Rise/fall trigger support. */ for (i = 0, j = 0; i < 16; ++i) { if (devc->trigger.risingmask & (1 << i) || devc->trigger.fallingmask & (1 << i)) masks[j++] = 1 << i; } build_lut_entry(masks[0], masks[0], lut->m0d); build_lut_entry(masks[1], masks[1], lut->m1d); /* Add glue logic */ if (masks[0] || masks[1]) { /* Transition trigger. */ if (masks[0] & devc->trigger.risingmask) add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3); if (masks[0] & devc->trigger.fallingmask) add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3); if (masks[1] & devc->trigger.risingmask) add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3); if (masks[1] & devc->trigger.fallingmask) add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3); } else { /* Only value/mask trigger. */ lut->m3 = 0xffff; } /* Triggertype: event. */ lut->params.selres = 3; return SR_OK; } static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *devc; struct clockselect_50 clockselect; int frac, triggerpin, ret; uint8_t triggerselect = 0; struct triggerinout triggerinout_conf; struct triggerlut lut; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; devc = sdi->priv; if (configure_channels(sdi) != SR_OK) { sr_err("Failed to configure channels."); return SR_ERR; } /* If the samplerate has not been set, default to 200 kHz. */ if (devc->cur_firmware == -1) { if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK) return ret; } /* Enter trigger programming mode. */ sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc); /* 100 and 200 MHz mode. */ if (devc->cur_samplerate >= SR_MHZ(100)) { sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc); /* Find which pin to trigger on from mask. */ for (triggerpin = 0; triggerpin < 8; ++triggerpin) if ((devc->trigger.risingmask | devc->trigger.fallingmask) & (1 << triggerpin)) break; /* Set trigger pin and light LED on trigger. */ triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7); /* Default rising edge. */ if (devc->trigger.fallingmask) triggerselect |= 1 << 3; /* All other modes. */ } else if (devc->cur_samplerate <= SR_MHZ(50)) { build_basic_trigger(&lut, devc); sigma_write_trigger_lut(&lut, devc); triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0); } /* Setup trigger in and out pins to default values. */ memset(&triggerinout_conf, 0, sizeof(struct triggerinout)); triggerinout_conf.trgout_bytrigger = 1; triggerinout_conf.trgout_enable = 1; sigma_write_register(WRITE_TRIGGER_OPTION, (uint8_t *) &triggerinout_conf, sizeof(struct triggerinout), devc); /* Go back to normal mode. */ sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc); /* Set clock select register. */ if (devc->cur_samplerate == SR_MHZ(200)) /* Enable 4 channels. */ sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc); else if (devc->cur_samplerate == SR_MHZ(100)) /* Enable 8 channels. */ sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc); else { /* * 50 MHz mode (or fraction thereof). Any fraction down to * 50 MHz / 256 can be used, but is not supported by sigrok API. */ frac = SR_MHZ(50) / devc->cur_samplerate - 1; clockselect.async = 0; clockselect.fraction = frac; clockselect.disabled_channels = 0; sigma_write_register(WRITE_CLOCK_SELECT, (uint8_t *) &clockselect, sizeof(clockselect), devc); } /* Setup maximum post trigger time. */ sigma_set_register(WRITE_POST_TRIGGER, (devc->capture_ratio * 255) / 100, devc); /* Start acqusition. */ gettimeofday(&devc->start_tv, 0); sigma_set_register(WRITE_MODE, 0x0d, devc); devc->cb_data = cb_data; /* Send header packet to the session bus. */ std_session_send_df_header(cb_data, LOG_PREFIX); /* Add capture source. */ sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi); devc->state.state = SIGMA_CAPTURE; return SR_OK; } static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *devc; (void)cb_data; devc = sdi->priv; devc->state.state = SIGMA_IDLE; sr_source_remove(0); return SR_OK; } SR_PRIV struct sr_dev_driver asix_sigma_driver_info = { .name = "asix-sigma", .longname = "ASIX SIGMA/SIGMA2", .api_version = 1, .init = init, .cleanup = cleanup, .scan = scan, .dev_list = dev_list, .dev_clear = dev_clear, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .priv = NULL, };