/* * This file is part of the sigrok project. * * Copyright (C) 2012 Bert Vermeulen * Copyright (C) 2012 Alexandru Gagniuc * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include "libsigrok.h" #include "libsigrok-internal.h" #include "radioshack-dmm.h" enum { READ_ALL, READ_TEMP, }; static gboolean checksum_valid(const struct rs_22_812_packet *rs_packet) { uint8_t *raw; uint8_t sum = 0; int i; raw = (void *)rs_packet; for (i = 0; i < RS_22_812_PACKET_SIZE - 1; i++) sum += raw[i]; /* This is just a funky constant added to the checksum. */ sum += 57; sum -= rs_packet->checksum; return (sum == 0); } static gboolean selection_good(const struct rs_22_812_packet *rs_packet) { int count; /* Does the packet have more than one multiplier ? */ count = 0; count += (rs_packet->indicatrix1 & RS_22_812_IND1_KILO) ? 1 : 0; count += (rs_packet->indicatrix1 & RS_22_812_IND1_MEGA) ? 1 : 0; count += (rs_packet->indicatrix1 & RS_22_812_IND1_MILI) ? 1 : 0; count += (rs_packet->indicatrix2 & RS_22_812_IND2_MICRO) ? 1 : 0; count += (rs_packet->indicatrix2 & RS_22_812_IND2_NANO) ? 1 : 0; if (count > 1) { sr_err("More than one multiplier detected in packet."); return FALSE; } /* Does the packet "measure" more than one type of value? */ count = 0; count += (rs_packet->indicatrix1 & RS_22_812_IND1_HZ) ? 1 : 0; count += (rs_packet->indicatrix1 & RS_22_812_IND1_OHM) ? 1 : 0; count += (rs_packet->indicatrix1 & RS_22_812_IND1_FARAD) ? 1 : 0; count += (rs_packet->indicatrix1 & RS_22_812_IND1_AMP) ? 1 : 0; count += (rs_packet->indicatrix1 & RS_22_812_IND1_VOLT) ? 1 : 0; count += (rs_packet->indicatrix2 & RS_22_812_IND2_DBM) ? 1 : 0; count += (rs_packet->indicatrix2 & RS_22_812_IND2_SEC) ? 1 : 0; count += (rs_packet->indicatrix2 & RS_22_812_IND2_DUTY) ? 1 : 0; count += (rs_packet->indicatrix2 & RS_22_812_IND2_HFE) ? 1 : 0; if (count > 1) { sr_err("More than one measurement type detected in packet."); return FALSE; } return TRUE; } /* * Since the 22-812 does not identify itself in any way, shape, or form, * we really don't know for sure who is sending the data. We must use every * possible check to filter out bad packets, especially since detection of the * 22-812 depends on how well we can filter the packets. */ SR_PRIV gboolean rs_22_812_packet_valid(const struct rs_22_812_packet *rs_packet) { if (!checksum_valid(rs_packet)) return FALSE; if (!(rs_packet->mode < RS_22_812_MODE_INVALID)) return FALSE; if (!selection_good(rs_packet)) return FALSE; return TRUE; } static uint8_t decode_digit(uint8_t raw_digit) { /* Take out the decimal point, so we can use a simple switch(). */ raw_digit &= ~RS_22_812_DP_MASK; switch (raw_digit) { case 0x00: case RS_22_812_LCD_0: return 0; case RS_22_812_LCD_1: return 1; case RS_22_812_LCD_2: return 2; case RS_22_812_LCD_3: return 3; case RS_22_812_LCD_4: return 4; case RS_22_812_LCD_5: return 5; case RS_22_812_LCD_6: return 6; case RS_22_812_LCD_7: return 7; case RS_22_812_LCD_8: return 8; case RS_22_812_LCD_9: return 9; default: sr_err("Invalid digit byte: 0x%02x.", raw_digit); return 0xff; } } static double lcdraw_to_double(const struct rs_22_812_packet *rs_packet, int type) { double rawval, multiplier = 1; uint8_t digit, raw_digit; gboolean dp_reached = FALSE; int i, end; /* end = 1: Don't parse last digit. end = 0: Parse all digits. */ end = (type == READ_TEMP) ? 1 : 0; /* We have 4 digits, and we start from the most significant. */ for (i = 3; i >= end; i--) { raw_digit = *(&(rs_packet->digit4) + i); digit = decode_digit(raw_digit); if (digit == 0xff) { rawval = NAN; break; } /* * Digit 1 does not have a decimal point. Instead, the decimal * point is used to indicate MAX, so we must avoid testing it. */ if ((i < 3) && (raw_digit & RS_22_812_DP_MASK)) dp_reached = TRUE; if (dp_reached) multiplier /= 10; rawval = rawval * 10 + digit; } rawval *= multiplier; if (rs_packet->info & RS_22_812_INFO_NEG) rawval *= -1; /* See if we need to multiply our raw value by anything. */ if (rs_packet->indicatrix1 & RS_22_812_IND2_NANO) { rawval *= 1E-9; } else if (rs_packet->indicatrix2 & RS_22_812_IND2_MICRO) { rawval *= 1E-6; } else if (rs_packet->indicatrix1 & RS_22_812_IND1_MILI) { rawval *= 1E-3; } else if (rs_packet->indicatrix1 & RS_22_812_IND1_KILO) { rawval *= 1E3; } else if (rs_packet->indicatrix1 & RS_22_812_IND1_MEGA) { rawval *= 1E6; } return rawval; } static gboolean is_celsius(struct rs_22_812_packet *rs_packet) { return ((rs_packet->digit4 & ~RS_22_812_DP_MASK) == RS_22_812_LCD_C); } static gboolean is_shortcirc(struct rs_22_812_packet *rs_packet) { return ((rs_packet->digit2 & ~RS_22_812_DP_MASK) == RS_22_812_LCD_h); } static gboolean is_logic_high(struct rs_22_812_packet *rs_packet) { sr_spew("Digit 2: 0x%02x.", rs_packet->digit2 & ~RS_22_812_DP_MASK); return ((rs_packet->digit2 & ~RS_22_812_DP_MASK) == RS_22_812_LCD_H); } static void handle_packet(struct rs_22_812_packet *rs_packet, struct dev_context *devc) { double rawval; struct sr_datafeed_packet packet; struct sr_datafeed_analog *analog; rawval = lcdraw_to_double(rs_packet, READ_ALL); /* TODO: Check malloc return value. */ analog = g_try_malloc0(sizeof(struct sr_datafeed_analog)); analog->num_samples = 1; /* TODO: Check malloc return value. */ analog->data = g_try_malloc(sizeof(float)); *analog->data = (float)rawval; analog->mq = -1; switch (rs_packet->mode) { case RS_22_812_MODE_DC_V: analog->mq = SR_MQ_VOLTAGE; analog->unit = SR_UNIT_VOLT; analog->mqflags |= SR_MQFLAG_DC; break; case RS_22_812_MODE_AC_V: analog->mq = SR_MQ_VOLTAGE; analog->unit = SR_UNIT_VOLT; analog->mqflags |= SR_MQFLAG_AC; break; case RS_22_812_MODE_DC_UA: case RS_22_812_MODE_DC_MA: case RS_22_812_MODE_DC_A: analog->mq = SR_MQ_CURRENT; analog->unit = SR_UNIT_AMPERE; analog->mqflags |= SR_MQFLAG_DC; break; case RS_22_812_MODE_AC_UA: case RS_22_812_MODE_AC_MA: case RS_22_812_MODE_AC_A: analog->mq = SR_MQ_CURRENT; analog->unit = SR_UNIT_AMPERE; analog->mqflags |= SR_MQFLAG_AC; break; case RS_22_812_MODE_OHM: analog->mq = SR_MQ_RESISTANCE; analog->unit = SR_UNIT_OHM; break; case RS_22_812_MODE_FARAD: analog->mq = SR_MQ_CAPACITANCE; analog->unit = SR_UNIT_FARAD; break; case RS_22_812_MODE_CONT: analog->mq = SR_MQ_CONTINUITY; analog->unit = SR_UNIT_BOOLEAN; *analog->data = is_shortcirc(rs_packet); break; case RS_22_812_MODE_DIODE: analog->mq = SR_MQ_VOLTAGE; analog->unit = SR_UNIT_VOLT; analog->mqflags |= SR_MQFLAG_DIODE | SR_MQFLAG_DC; break; case RS_22_812_MODE_HZ: case RS_22_812_MODE_VOLT_HZ: case RS_22_812_MODE_AMP_HZ: analog->mq = SR_MQ_FREQUENCY; analog->unit = SR_UNIT_HERTZ; break; case RS_22_812_MODE_LOGIC: /* * No matter whether or not we have an actual voltage reading, * we are measuring voltage, so we set our MQ as VOLTAGE. */ analog->mq = SR_MQ_VOLTAGE; if (!isnan(rawval)) { /* We have an actual voltage. */ analog->unit = SR_UNIT_VOLT; } else { /* We have either HI or LOW. */ analog->unit = SR_UNIT_BOOLEAN; *analog->data = is_logic_high(rs_packet); } break; case RS_22_812_MODE_HFE: analog->mq = SR_MQ_GAIN; analog->unit = SR_UNIT_UNITLESS; break; case RS_22_812_MODE_DUTY: case RS_22_812_MODE_VOLT_DUTY: case RS_22_812_MODE_AMP_DUTY: analog->mq = SR_MQ_DUTY_CYCLE; analog->unit = SR_UNIT_PERCENTAGE; break; case RS_22_812_MODE_WIDTH: case RS_22_812_MODE_VOLT_WIDTH: case RS_22_812_MODE_AMP_WIDTH: analog->mq = SR_MQ_PULSE_WIDTH; analog->unit = SR_UNIT_SECOND; case RS_22_812_MODE_TEMP: analog->mq = SR_MQ_TEMPERATURE; /* We need to reparse. */ *analog->data = lcdraw_to_double(rs_packet, READ_TEMP); analog->unit = is_celsius(rs_packet) ? SR_UNIT_CELSIUS : SR_UNIT_FAHRENHEIT; break; case RS_22_812_MODE_DBM: analog->mq = SR_MQ_POWER; analog->unit = SR_UNIT_DECIBEL_MW; analog->mqflags |= SR_MQFLAG_AC; break; default: sr_err("Unknown mode: %d.", rs_packet->mode); break; } if (rs_packet->info & RS_22_812_INFO_HOLD) analog->mqflags |= SR_MQFLAG_HOLD; if (rs_packet->digit4 & RS_22_812_DIG4_MAX) analog->mqflags |= SR_MQFLAG_MAX; if (rs_packet->indicatrix2 & RS_22_812_IND2_MIN) analog->mqflags |= SR_MQFLAG_MIN; if (rs_packet->info & RS_22_812_INFO_AUTO) analog->mqflags |= SR_MQFLAG_AUTORANGE; if (analog->mq != -1) { /* Got a measurement. */ sr_spew("Value: %f.", rawval); packet.type = SR_DF_ANALOG; packet.payload = analog; sr_session_send(devc->cb_data, &packet); devc->num_samples++; } g_free(analog->data); g_free(analog); } static void handle_new_data(struct dev_context *devc, int fd) { int len; size_t i, offset = 0; struct rs_22_812_packet *rs_packet; /* Try to get as much data as the buffer can hold. */ len = RS_DMM_BUFSIZE - devc->buflen; len = serial_read(fd, devc->buf + devc->buflen, len); if (len < 1) { sr_err("Serial port read error."); return; } devc->buflen += len; /* Now look for packets in that data. */ while ((devc->buflen - offset) >= RS_22_812_PACKET_SIZE) { rs_packet = (void *)(devc->buf + offset); if (rs_22_812_packet_valid(rs_packet)) { handle_packet(rs_packet, devc); offset += RS_22_812_PACKET_SIZE; } else { offset++; } } /* If we have any data left, move it to the beginning of our buffer. */ for (i = 0; i < devc->buflen - offset; i++) devc->buf[i] = devc->buf[offset + i]; devc->buflen -= offset; } SR_PRIV int radioshack_dmm_receive_data(int fd, int revents, void *cb_data) { struct sr_dev_inst *sdi; struct dev_context *devc; if (!(sdi = cb_data)) return TRUE; if (!(devc = sdi->priv)) return TRUE; if (revents == G_IO_IN) { /* Serial data arrived. */ handle_new_data(devc, fd); } if (devc->num_samples >= devc->limit_samples) { sdi->driver->dev_acquisition_stop(sdi, cb_data); return TRUE; } return TRUE; }