/* * This file is part of the libsigrok project. * * Copyright (C) 2013 Marcus Comstedt * Copyright (C) 2013 Bert Vermeulen * Copyright (C) 2012 Joel Holdsworth * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include "libsigrok.h" #include "libsigrok-internal.h" #include "protocol.h" #define LOGIC16_VID 0x21a9 #define LOGIC16_PID 0x1001 #define USB_INTERFACE 0 #define USB_CONFIGURATION 1 #define FX2_FIRMWARE FIRMWARE_DIR "/saleae-logic16-fx2.fw" #define MAX_RENUM_DELAY_MS 3000 #define NUM_SIMUL_TRANSFERS 32 SR_PRIV struct sr_dev_driver saleae_logic16_driver_info; static struct sr_dev_driver *di = &saleae_logic16_driver_info; static const int32_t hwopts[] = { SR_CONF_CONN, }; static const int32_t hwcaps[] = { SR_CONF_LOGIC_ANALYZER, SR_CONF_SAMPLERATE, SR_CONF_VOLTAGE_THRESHOLD, /* These are really implemented in the driver, not the hardware. */ SR_CONF_LIMIT_SAMPLES, SR_CONF_CONTINUOUS, }; static const char *channel_names[] = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", NULL, }; static const struct { enum voltage_range range; gdouble low; gdouble high; } volt_thresholds[] = { { VOLTAGE_RANGE_18_33_V, 0.7, 1.4 }, { VOLTAGE_RANGE_5_V, 1.4, 3.6 }, }; static const uint64_t samplerates[] = { SR_KHZ(500), SR_MHZ(1), SR_MHZ(2), SR_MHZ(4), SR_MHZ(5), SR_MHZ(8), SR_MHZ(10), SR_KHZ(12500), SR_MHZ(16), SR_MHZ(25), SR_MHZ(32), SR_MHZ(40), SR_MHZ(80), SR_MHZ(100), }; static int init(struct sr_context *sr_ctx) { return std_init(sr_ctx, di, LOG_PREFIX); } static gboolean check_conf_profile(libusb_device *dev) { struct libusb_device_descriptor des; struct libusb_device_handle *hdl; gboolean ret; unsigned char strdesc[64]; hdl = NULL; ret = FALSE; while (!ret) { /* Assume the FW has not been loaded, unless proven wrong. */ if (libusb_get_device_descriptor(dev, &des) != 0) break; if (libusb_open(dev, &hdl) != 0) break; if (libusb_get_string_descriptor_ascii(hdl, des.iManufacturer, strdesc, sizeof(strdesc)) < 0) break; if (strcmp((const char *)strdesc, "Saleae LLC")) break; if (libusb_get_string_descriptor_ascii(hdl, des.iProduct, strdesc, sizeof(strdesc)) < 0) break; if (strcmp((const char *)strdesc, "Logic S/16")) break; /* If we made it here, it must be a configured Logic16. */ ret = TRUE; } if (hdl) libusb_close(hdl); return ret; } static GSList *scan(GSList *options) { struct drv_context *drvc; struct dev_context *devc; struct sr_dev_inst *sdi; struct sr_usb_dev_inst *usb; struct sr_channel *ch; struct sr_config *src; GSList *l, *devices, *conn_devices; struct libusb_device_descriptor des; libusb_device **devlist; int devcnt, ret, i, j; const char *conn; drvc = di->priv; conn = NULL; for (l = options; l; l = l->next) { src = l->data; switch (src->key) { case SR_CONF_CONN: conn = g_variant_get_string(src->data, NULL); break; } } if (conn) conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn); else conn_devices = NULL; /* Find all Logic16 devices and upload firmware to them. */ devices = NULL; libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); for (i = 0; devlist[i]; i++) { if (conn) { usb = NULL; for (l = conn_devices; l; l = l->next) { usb = l->data; if (usb->bus == libusb_get_bus_number(devlist[i]) && usb->address == libusb_get_device_address(devlist[i])) break; } if (!l) /* This device matched none of the ones that * matched the conn specification. */ continue; } if ((ret = libusb_get_device_descriptor(devlist[i], &des)) != 0) { sr_warn("Failed to get device descriptor: %s.", libusb_error_name(ret)); continue; } if (des.idVendor != LOGIC16_VID || des.idProduct != LOGIC16_PID) continue; devcnt = g_slist_length(drvc->instances); sdi = sr_dev_inst_new(devcnt, SR_ST_INITIALIZING, "Saleae", "Logic16", NULL); if (!sdi) return NULL; sdi->driver = di; for (j = 0; channel_names[j]; j++) { if (!(ch = sr_probe_new(j, SR_PROBE_LOGIC, TRUE, channel_names[j]))) return NULL; sdi->channels = g_slist_append(sdi->channels, ch); } if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) return NULL; devc->selected_voltage_range = VOLTAGE_RANGE_18_33_V; sdi->priv = devc; drvc->instances = g_slist_append(drvc->instances, sdi); devices = g_slist_append(devices, sdi); if (check_conf_profile(devlist[i])) { /* Already has the firmware, so fix the new address. */ sr_dbg("Found a Logic16 device."); sdi->status = SR_ST_INACTIVE; sdi->inst_type = SR_INST_USB; sdi->conn = sr_usb_dev_inst_new( libusb_get_bus_number(devlist[i]), libusb_get_device_address(devlist[i]), NULL); } else { if (ezusb_upload_firmware(devlist[i], USB_CONFIGURATION, FX2_FIRMWARE) == SR_OK) /* Store when this device's FW was updated. */ devc->fw_updated = g_get_monotonic_time(); else sr_err("Firmware upload failed for " "device %d.", devcnt); sdi->inst_type = SR_INST_USB; sdi->conn = sr_usb_dev_inst_new( libusb_get_bus_number(devlist[i]), 0xff, NULL); } } libusb_free_device_list(devlist, 1); g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free); return devices; } static GSList *dev_list(void) { return ((struct drv_context *)(di->priv))->instances; } static int logic16_dev_open(struct sr_dev_inst *sdi) { libusb_device **devlist; struct sr_usb_dev_inst *usb; struct libusb_device_descriptor des; struct drv_context *drvc; int ret, skip, i, device_count; drvc = di->priv; usb = sdi->conn; if (sdi->status == SR_ST_ACTIVE) /* Device is already in use. */ return SR_ERR; skip = 0; device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); if (device_count < 0) { sr_err("Failed to get device list: %s.", libusb_error_name(device_count)); return SR_ERR; } for (i = 0; i < device_count; i++) { if ((ret = libusb_get_device_descriptor(devlist[i], &des))) { sr_err("Failed to get device descriptor: %s.", libusb_error_name(ret)); continue; } if (des.idVendor != LOGIC16_VID || des.idProduct != LOGIC16_PID) continue; if (sdi->status == SR_ST_INITIALIZING) { if (skip != sdi->index) { /* Skip devices of this type that aren't the one we want. */ skip += 1; continue; } } else if (sdi->status == SR_ST_INACTIVE) { /* * This device is fully enumerated, so we need to find * this device by vendor, product, bus and address. */ if (libusb_get_bus_number(devlist[i]) != usb->bus || libusb_get_device_address(devlist[i]) != usb->address) /* This is not the one. */ continue; } if (!(ret = libusb_open(devlist[i], &usb->devhdl))) { if (usb->address == 0xff) /* * First time we touch this device after FW * upload, so we don't know the address yet. */ usb->address = libusb_get_device_address(devlist[i]); } else { sr_err("Failed to open device: %s.", libusb_error_name(ret)); break; } ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE); if (ret == LIBUSB_ERROR_BUSY) { sr_err("Unable to claim USB interface. Another " "program or driver has already claimed it."); break; } else if (ret == LIBUSB_ERROR_NO_DEVICE) { sr_err("Device has been disconnected."); break; } else if (ret != 0) { sr_err("Unable to claim interface: %s.", libusb_error_name(ret)); break; } if ((ret = logic16_init_device(sdi)) != SR_OK) { sr_err("Failed to init device."); break; } sdi->status = SR_ST_ACTIVE; sr_info("Opened device %d on %d.%d, interface %d.", sdi->index, usb->bus, usb->address, USB_INTERFACE); break; } libusb_free_device_list(devlist, 1); if (sdi->status != SR_ST_ACTIVE) { if (usb->devhdl) { libusb_release_interface(usb->devhdl, USB_INTERFACE); libusb_close(usb->devhdl); usb->devhdl = NULL; } return SR_ERR; } return SR_OK; } static int dev_open(struct sr_dev_inst *sdi) { struct dev_context *devc; int ret; int64_t timediff_us, timediff_ms; devc = sdi->priv; /* * If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS * milliseconds for the FX2 to renumerate. */ ret = SR_ERR; if (devc->fw_updated > 0) { sr_info("Waiting for device to reset."); /* Takes >= 300ms for the FX2 to be gone from the USB bus. */ g_usleep(300 * 1000); timediff_ms = 0; while (timediff_ms < MAX_RENUM_DELAY_MS) { if ((ret = logic16_dev_open(sdi)) == SR_OK) break; g_usleep(100 * 1000); timediff_us = g_get_monotonic_time() - devc->fw_updated; timediff_ms = timediff_us / 1000; sr_spew("Waited %" PRIi64 "ms.", timediff_ms); } if (ret != SR_OK) { sr_err("Device failed to renumerate."); return SR_ERR; } sr_info("Device came back after %" PRIi64 "ms.", timediff_ms); } else { sr_info("Firmware upload was not needed."); ret = logic16_dev_open(sdi); } if (ret != SR_OK) { sr_err("Unable to open device."); return SR_ERR; } if (devc->cur_samplerate == 0) { /* Samplerate hasn't been set; default to the slowest one. */ devc->cur_samplerate = samplerates[0]; } return SR_OK; } static int dev_close(struct sr_dev_inst *sdi) { struct sr_usb_dev_inst *usb; usb = sdi->conn; if (usb->devhdl == NULL) return SR_ERR; sr_info("Closing device %d on %d.%d interface %d.", sdi->index, usb->bus, usb->address, USB_INTERFACE); libusb_release_interface(usb->devhdl, USB_INTERFACE); libusb_close(usb->devhdl); usb->devhdl = NULL; sdi->status = SR_ST_INACTIVE; return SR_OK; } static int cleanup(void) { int ret; struct drv_context *drvc; if (!(drvc = di->priv)) /* Can get called on an unused driver, doesn't matter. */ return SR_OK; ret = std_dev_clear(di, NULL); g_free(drvc); di->priv = NULL; return ret; } static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; struct sr_usb_dev_inst *usb; GVariant *range[2]; char str[128]; int ret; unsigned int i; (void)cg; ret = SR_OK; switch (key) { case SR_CONF_CONN: if (!sdi || !sdi->conn) return SR_ERR_ARG; usb = sdi->conn; if (usb->address == 255) /* Device still needs to re-enumerate after firmware * upload, so we don't know its (future) address. */ return SR_ERR; snprintf(str, 128, "%d.%d", usb->bus, usb->address); *data = g_variant_new_string(str); break; case SR_CONF_SAMPLERATE: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_uint64(devc->cur_samplerate); break; case SR_CONF_VOLTAGE_THRESHOLD: if (!sdi) return SR_ERR; devc = sdi->priv; ret = SR_ERR; for (i = 0; i < ARRAY_SIZE(volt_thresholds); i++) { if (devc->selected_voltage_range != volt_thresholds[i].range) continue; range[0] = g_variant_new_double(volt_thresholds[i].low); range[1] = g_variant_new_double(volt_thresholds[i].high); *data = g_variant_new_tuple(range, 2); ret = SR_OK; break; } break; default: return SR_ERR_NA; } return ret; } static int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; gdouble low, high; int ret; unsigned int i; (void)cg; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; devc = sdi->priv; ret = SR_OK; switch (key) { case SR_CONF_SAMPLERATE: devc->cur_samplerate = g_variant_get_uint64(data); break; case SR_CONF_LIMIT_SAMPLES: devc->limit_samples = g_variant_get_uint64(data); break; case SR_CONF_VOLTAGE_THRESHOLD: g_variant_get(data, "(dd)", &low, &high); ret = SR_ERR_ARG; for (i = 0; i < ARRAY_SIZE(volt_thresholds); i++) { if (fabs(volt_thresholds[i].low - low) < 0.1 && fabs(volt_thresholds[i].high - high) < 0.1) { devc->selected_voltage_range = volt_thresholds[i].range; ret = SR_OK; break; } } break; default: ret = SR_ERR_NA; } return ret; } static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { GVariant *gvar, *range[2]; GVariantBuilder gvb; int ret; unsigned int i; (void)sdi; (void)cg; ret = SR_OK; switch (key) { case SR_CONF_SCAN_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, hwopts, ARRAY_SIZE(hwopts), sizeof(int32_t)); break; case SR_CONF_DEVICE_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t)); break; case SR_CONF_SAMPLERATE: g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates, ARRAY_SIZE(samplerates), sizeof(uint64_t)); g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_VOLTAGE_THRESHOLD: g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY); for (i = 0; i < ARRAY_SIZE(volt_thresholds); i++) { range[0] = g_variant_new_double(volt_thresholds[i].low); range[1] = g_variant_new_double(volt_thresholds[i].high); gvar = g_variant_new_tuple(range, 2); g_variant_builder_add_value(&gvb, gvar); } *data = g_variant_builder_end(&gvb); break; default: return SR_ERR_NA; } return ret; } static void abort_acquisition(struct dev_context *devc) { int i; devc->num_samples = -1; for (i = devc->num_transfers - 1; i >= 0; i--) { if (devc->transfers[i]) libusb_cancel_transfer(devc->transfers[i]); } } static unsigned int bytes_per_ms(struct dev_context *devc) { return devc->cur_samplerate * devc->num_channels / 8000; } static size_t get_buffer_size(struct dev_context *devc) { size_t s; /* * The buffer should be large enough to hold 10ms of data and * a multiple of 512. */ s = 10 * bytes_per_ms(devc); return (s + 511) & ~511; } static unsigned int get_number_of_transfers(struct dev_context *devc) { unsigned int n; /* Total buffer size should be able to hold about 500ms of data. */ n = 500 * bytes_per_ms(devc) / get_buffer_size(devc); if (n > NUM_SIMUL_TRANSFERS) return NUM_SIMUL_TRANSFERS; return n; } static unsigned int get_timeout(struct dev_context *devc) { size_t total_size; unsigned int timeout; total_size = get_buffer_size(devc) * get_number_of_transfers(devc); timeout = total_size / bytes_per_ms(devc); return timeout + timeout / 4; /* Leave a headroom of 25% percent. */ } static int configure_channels(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_channel *ch; GSList *l; uint16_t channel_bit; devc = sdi->priv; devc->cur_channels = 0; devc->num_channels = 0; for (l = sdi->channels; l; l = l->next) { ch = (struct sr_channel *)l->data; if (ch->enabled == FALSE) continue; channel_bit = 1 << (ch->index); devc->cur_channels |= channel_bit; #ifdef WORDS_BIGENDIAN /* * Output logic data should be stored in little endian format. * To speed things up during conversion, do the switcharoo * here instead. */ channel_bit = 1 << (ch->index ^ 8); #endif devc->channel_masks[devc->num_channels++] = channel_bit; } return SR_OK; } static int receive_data(int fd, int revents, void *cb_data) { struct timeval tv; struct dev_context *devc; struct drv_context *drvc; const struct sr_dev_inst *sdi; (void)fd; (void)revents; sdi = cb_data; drvc = di->priv; devc = sdi->priv; tv.tv_sec = tv.tv_usec = 0; libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv); if (devc->num_samples == -2) { logic16_abort_acquisition(sdi); abort_acquisition(devc); } return TRUE; } static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *devc; struct drv_context *drvc; struct sr_usb_dev_inst *usb; struct libusb_transfer *transfer; unsigned int i, timeout, num_transfers; int ret; unsigned char *buf; size_t size, convsize; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; drvc = di->priv; devc = sdi->priv; usb = sdi->conn; /* Configures devc->cur_channels. */ if (configure_channels(sdi) != SR_OK) { sr_err("Failed to configure channels."); return SR_ERR; } devc->cb_data = cb_data; devc->num_samples = 0; devc->empty_transfer_count = 0; devc->cur_channel = 0; memset(devc->channel_data, 0, sizeof(devc->channel_data)); timeout = get_timeout(devc); num_transfers = get_number_of_transfers(devc); size = get_buffer_size(devc); convsize = (size / devc->num_channels + 2) * 16; devc->submitted_transfers = 0; devc->convbuffer_size = convsize; if (!(devc->convbuffer = g_try_malloc(convsize))) { sr_err("Conversion buffer malloc failed."); return SR_ERR_MALLOC; } devc->transfers = g_try_malloc0(sizeof(*devc->transfers) * num_transfers); if (!devc->transfers) { sr_err("USB transfers malloc failed."); g_free(devc->convbuffer); return SR_ERR_MALLOC; } if ((ret = logic16_setup_acquisition(sdi, devc->cur_samplerate, devc->cur_channels)) != SR_OK) { g_free(devc->transfers); g_free(devc->convbuffer); return ret; } devc->num_transfers = num_transfers; for (i = 0; i < num_transfers; i++) { if (!(buf = g_try_malloc(size))) { sr_err("USB transfer buffer malloc failed."); if (devc->submitted_transfers) abort_acquisition(devc); else { g_free(devc->transfers); g_free(devc->convbuffer); } return SR_ERR_MALLOC; } transfer = libusb_alloc_transfer(0); libusb_fill_bulk_transfer(transfer, usb->devhdl, 2 | LIBUSB_ENDPOINT_IN, buf, size, logic16_receive_transfer, devc, timeout); if ((ret = libusb_submit_transfer(transfer)) != 0) { sr_err("Failed to submit transfer: %s.", libusb_error_name(ret)); libusb_free_transfer(transfer); g_free(buf); abort_acquisition(devc); return SR_ERR; } devc->transfers[i] = transfer; devc->submitted_transfers++; } devc->ctx = drvc->sr_ctx; usb_source_add(devc->ctx, timeout, receive_data, (void *)sdi); /* Send header packet to the session bus. */ std_session_send_df_header(cb_data, LOG_PREFIX); if ((ret = logic16_start_acquisition(sdi)) != SR_OK) { abort_acquisition(devc); return ret; } return SR_OK; } static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data) { int ret; (void)cb_data; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; ret = logic16_abort_acquisition(sdi); abort_acquisition(sdi->priv); return ret; } SR_PRIV struct sr_dev_driver saleae_logic16_driver_info = { .name = "saleae-logic16", .longname = "Saleae Logic16", .api_version = 1, .init = init, .cleanup = cleanup, .scan = scan, .dev_list = dev_list, .dev_clear = NULL, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .priv = NULL, };