/* * This file is part of the sigrok project. * * Copyright (C) 2011 Daniel Ribeiro * Copyright (C) 2012 Renato Caldas * Copyright (C) 2013 Lior Elazary * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "protocol.h" /* serial protocol */ #define mso_trans(a, v) \ (((v) & 0x3f) | (((v) & 0xc0) << 6) | (((a) & 0xf) << 8) | \ ((~(v) & 0x20) << 1) | ((~(v) & 0x80) << 7)) static const char mso_head[] = { 0x40, 0x4c, 0x44, 0x53, 0x7e }; static const char mso_foot[] = { 0x7e }; extern SR_PRIV struct sr_dev_driver link_mso19_driver_info; static struct sr_dev_driver *di = &link_mso19_driver_info; SR_PRIV int mso_send_control_message(struct sr_serial_dev_inst *serial, uint16_t payload[], int n) { int i, w, ret, s = n * 2 + sizeof(mso_head) + sizeof(mso_foot); char *p, *buf; ret = SR_ERR; if (serial->fd < 0) goto ret; if (!(buf = g_try_malloc(s))) { sr_err("Failed to malloc message buffer."); ret = SR_ERR_MALLOC; goto ret; } p = buf; memcpy(p, mso_head, sizeof(mso_head)); p += sizeof(mso_head); for (i = 0; i < n; i++) { *(uint16_t *) p = g_htons(payload[i]); p += 2; } memcpy(p, mso_foot, sizeof(mso_foot)); w = 0; while (w < s) { ret = serial_write(serial, buf + w, s - w); if (ret < 0) { ret = SR_ERR; goto free; } w += ret; } ret = SR_OK; free: g_free(buf); ret: return ret; } SR_PRIV int mso_configure_trigger(const struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; uint16_t threshold_value = mso_calc_raw_from_mv(devc); threshold_value = 0x153C; uint8_t trigger_config = 0; if (devc->trigger_slope) trigger_config |= 0x04; //Trigger on falling edge switch (devc->trigger_outsrc) { case 1: trigger_config |= 0x00; //Trigger pulse output break; case 2: trigger_config |= 0x08; //PWM DAC from the pattern generator buffer break; case 3: trigger_config |= 0x18; //White noise break; } switch (devc->trigger_chan) { case 0: trigger_config |= 0x00; //DSO level trigger //b00000000 break; case 1: trigger_config |= 0x20; //DSO level trigger & width < trigger_width break; case 2: trigger_config |= 0x40; //DSO level trigger & width >= trigger_width break; case 3: trigger_config |= 0x60; //LA combination trigger break; } //Last bit of trigger config reg 4 needs to be 1 for trigger enable, //otherwise the trigger is not enabled if (devc->use_trigger) trigger_config |= 0x80; uint16_t ops[18]; ops[0] = mso_trans(3, threshold_value & 0xff); //The trigger_config also holds the 2 MSB bits from the threshold value ops[1] = mso_trans(4, trigger_config | ((threshold_value >> 8) & 0x03)); ops[2] = mso_trans(5, devc->la_trigger); ops[3] = mso_trans(6, devc->la_trigger_mask); ops[4] = mso_trans(7, devc->trigger_holdoff[0]); ops[5] = mso_trans(8, devc->trigger_holdoff[1]); ops[6] = mso_trans(11, devc->dso_trigger_width / SR_HZ_TO_NS(devc->cur_rate)); /* Select the SPI/I2C trigger config bank */ ops[7] = mso_trans(REG_CTL2, (devc->ctlbase2 | BITS_CTL2_BANK(2))); /* Configure the SPI/I2C protocol trigger */ ops[8] = mso_trans(REG_PT_WORD(0), devc->protocol_trigger.word[0]); ops[9] = mso_trans(REG_PT_WORD(1), devc->protocol_trigger.word[1]); ops[10] = mso_trans(REG_PT_WORD(2), devc->protocol_trigger.word[2]); ops[11] = mso_trans(REG_PT_WORD(3), devc->protocol_trigger.word[3]); ops[12] = mso_trans(REG_PT_MASK(0), devc->protocol_trigger.mask[0]); ops[13] = mso_trans(REG_PT_MASK(1), devc->protocol_trigger.mask[1]); ops[14] = mso_trans(REG_PT_MASK(2), devc->protocol_trigger.mask[2]); ops[15] = mso_trans(REG_PT_MASK(3), devc->protocol_trigger.mask[3]); ops[16] = mso_trans(REG_PT_SPIMODE, devc->protocol_trigger.spimode); /* Select the default config bank */ ops[17] = mso_trans(REG_CTL2, devc->ctlbase2); return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops)); } SR_PRIV int mso_configure_threshold_level(const struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; return mso_dac_out(sdi, la_threshold_map[devc->la_threshold]); } SR_PRIV int mso_read_buffer(struct sr_dev_inst *sdi) { uint16_t ops[] = { mso_trans(REG_BUFFER, 0) }; struct dev_context *devc = sdi->priv; sr_dbg("Requesting buffer dump."); return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops)); } SR_PRIV int mso_arm(const struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; uint16_t ops[] = { mso_trans(REG_CTL1, devc->ctlbase1 | BIT_CTL1_RESETFSM), mso_trans(REG_CTL1, devc->ctlbase1 | BIT_CTL1_ARM), mso_trans(REG_CTL1, devc->ctlbase1), }; sr_dbg("Requesting trigger arm."); return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops)); } SR_PRIV int mso_force_capture(struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; uint16_t ops[] = { mso_trans(REG_CTL1, devc->ctlbase1 | 8), mso_trans(REG_CTL1, devc->ctlbase1), }; sr_dbg("Requesting forced capture."); return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops)); } SR_PRIV int mso_dac_out(const struct sr_dev_inst *sdi, uint16_t val) { struct dev_context *devc = sdi->priv; uint16_t ops[] = { mso_trans(REG_DAC1, (val >> 8) & 0xff), mso_trans(REG_DAC2, val & 0xff), mso_trans(REG_CTL1, devc->ctlbase1 | BIT_CTL1_RESETADC), }; sr_dbg("Setting dac word to 0x%x.", val); return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops)); } SR_PRIV inline uint16_t mso_calc_raw_from_mv(struct dev_context * devc) { return (uint16_t) (0x200 - ((devc->dso_trigger_voltage / devc->dso_probe_attn) / devc->vbit)); } SR_PRIV int mso_parse_serial(const char *iSerial, const char *iProduct, struct dev_context *devc) { unsigned int u1, u2, u3, u4, u5, u6; iProduct = iProduct; /* FIXME: This code is in the original app, but I think its * used only for the GUI */ /* if (strstr(iProduct, "REV_02") || strstr(iProduct, "REV_03")) devc->num_sample_rates = 0x16; else devc->num_sample_rates = 0x10; */ /* parse iSerial */ if (iSerial[0] != '4' || sscanf(iSerial, "%5u%3u%3u%1u%1u%6u", &u1, &u2, &u3, &u4, &u5, &u6) != 6) return SR_ERR; devc->hwmodel = u4; devc->hwrev = u5; devc->vbit = u1 / 10000; if (devc->vbit == 0) devc->vbit = 4.19195; devc->dac_offset = u2; if (devc->dac_offset == 0) devc->dac_offset = 0x1ff; devc->offset_range = u3; if (devc->offset_range == 0) devc->offset_range = 0x17d; /* * FIXME: There is more code on the original software to handle * bigger iSerial strings, but as I can't test on my device * I will not implement it yet */ return SR_OK; } SR_PRIV int mso_reset_adc(struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; uint16_t ops[2]; ops[0] = mso_trans(REG_CTL1, (devc->ctlbase1 | BIT_CTL1_RESETADC)); ops[1] = mso_trans(REG_CTL1, devc->ctlbase1); devc->ctlbase1 |= BIT_CTL1_ADC_UNKNOWN4; sr_dbg("Requesting ADC reset."); return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops)); } SR_PRIV int mso_reset_fsm(struct sr_dev_inst *sdi) { struct dev_context *devc = sdi->priv; uint16_t ops[1]; devc->ctlbase1 |= BIT_CTL1_RESETFSM; ops[0] = mso_trans(REG_CTL1, devc->ctlbase1); sr_dbg("Requesting ADC reset."); return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops)); } SR_PRIV int mso_toggle_led(struct sr_dev_inst *sdi, int state) { struct dev_context *devc = sdi->priv; uint16_t ops[1]; devc->ctlbase1 &= ~BIT_CTL1_LED; if (state) devc->ctlbase1 |= BIT_CTL1_LED; ops[0] = mso_trans(REG_CTL1, devc->ctlbase1); sr_dbg("Requesting LED toggle."); return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops)); } SR_PRIV void stop_acquisition(const struct sr_dev_inst *sdi) { struct sr_datafeed_packet packet; struct dev_context *devc; devc = sdi->priv; sr_source_remove(devc->serial->fd); /* Terminate session */ packet.type = SR_DF_END; sr_session_send(sdi, &packet); } SR_PRIV int mso_clkrate_out(struct sr_serial_dev_inst *serial, uint16_t val) { uint16_t ops[] = { mso_trans(REG_CLKRATE1, (val >> 8) & 0xff), mso_trans(REG_CLKRATE2, val & 0xff), }; sr_dbg("Setting clkrate word to 0x%x.", val); return mso_send_control_message(serial, ARRAY_AND_SIZE(ops)); } SR_PRIV int mso_configure_rate(const struct sr_dev_inst *sdi, uint32_t rate) { struct dev_context *devc = sdi->priv; unsigned int i; int ret = SR_ERR; for (i = 0; i < ARRAY_SIZE(rate_map); i++) { if (rate_map[i].rate == rate) { devc->ctlbase2 = rate_map[i].slowmode; ret = mso_clkrate_out(devc->serial, rate_map[i].val); if (ret == SR_OK) devc->cur_rate = rate; return ret; } } if (ret != SR_OK) sr_err("Unsupported rate."); return ret; } SR_PRIV int mso_check_trigger(struct sr_serial_dev_inst *serial, uint8_t *info) { uint16_t ops[] = { mso_trans(REG_TRIGGER, 0) }; int ret; sr_dbg("Requesting trigger state."); ret = mso_send_control_message(serial, ARRAY_AND_SIZE(ops)); if (info == NULL || ret != SR_OK) return ret; uint8_t buf = 0; if (serial_read(serial, &buf, 1) != 1) /* FIXME: Need timeout */ ret = SR_ERR; if (!info) *info = buf; sr_dbg("Trigger state is: 0x%x.", *info); return ret; } SR_PRIV int mso_receive_data(int fd, int revents, void *cb_data) { struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; struct sr_dev_inst *sdi; GSList *l; int i; struct drv_context *drvc = di->priv; /* Find this device's devc struct by its fd. */ struct dev_context *devc = NULL; for (l = drvc->instances; l; l = l->next) { sdi = l->data; devc = sdi->priv; if (devc->serial->fd == fd) break; devc = NULL; } if (!devc) /* Shouldn't happen. */ return TRUE; (void)revents; uint8_t in[1024]; size_t s = serial_read(devc->serial, in, sizeof(in)); if (s <= 0) return FALSE; /* Check if we triggered, then send a command that we are ready * to read the data */ if (devc->trigger_state != MSO_TRIGGER_DATAREADY) { devc->trigger_state = in[0]; if (devc->trigger_state == MSO_TRIGGER_DATAREADY) { mso_read_buffer(sdi); devc->buffer_n = 0; } else { mso_check_trigger(devc->serial, NULL); } return TRUE; } /* the hardware always dumps 1024 samples, 24bits each */ if (devc->buffer_n < 3072) { memcpy(devc->buffer + devc->buffer_n, in, s); devc->buffer_n += s; } if (devc->buffer_n < 3072) return TRUE; /* do the conversion */ uint8_t logic_out[1024]; double analog_out[1024]; for (i = 0; i < 1024; i++) { /* FIXME: Need to do conversion to mV */ analog_out[i] = (devc->buffer[i * 3] & 0x3f) | ((devc->buffer[i * 3 + 1] & 0xf) << 6); (void)analog_out; logic_out[i] = ((devc->buffer[i * 3 + 1] & 0x30) >> 4) | ((devc->buffer[i * 3 + 2] & 0x3f) << 2); } packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = 1024; logic.unitsize = 1; logic.data = logic_out; sr_session_send(cb_data, &packet); devc->num_samples += 1024; if (devc->limit_samples && devc->num_samples >= devc->limit_samples) { sr_info("Requested number of samples reached."); sdi->driver->dev_acquisition_stop(sdi, cb_data); } return TRUE; } SR_PRIV int mso_configure_probes(const struct sr_dev_inst *sdi) { struct dev_context *devc; struct sr_probe *probe; GSList *l; char *tc; devc = sdi->priv; devc->la_trigger_mask = 0xFF; //the mask for the LA_TRIGGER (bits set to 0 matter, those set to 1 are ignored). devc->la_trigger = 0x00; //The value of the LA byte that generates a trigger event (in that mode). devc->dso_trigger_voltage = 3; devc->dso_probe_attn = 1; devc->trigger_outsrc = 0; devc->trigger_chan = 3; //LA combination trigger devc->use_trigger = FALSE; for (l = sdi->probes; l; l = l->next) { probe = (struct sr_probe *)l->data; if (probe->enabled == FALSE) continue; int probe_bit = 1 << (probe->index); if (!(probe->trigger)) continue; devc->use_trigger = TRUE; //Configure trigger mask and value. for (tc = probe->trigger; *tc; tc++) { devc->la_trigger_mask &= ~probe_bit; if (*tc == '1') devc->la_trigger |= probe_bit; } } return SR_OK; }