/* * This file is part of the libsigrok project. * * Copyright (C) 2012 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * Cyrustek ES51922 protocol parser. * * Communication parameters: Unidirectional, 19230/7o1 */ #include #include #include #include #include "libsigrok.h" #include "libsigrok-internal.h" /* Message logging helpers with driver-specific prefix string. */ #define DRIVER_LOG_DOMAIN "es51922: " #define sr_log(l, s, args...) sr_log(l, DRIVER_LOG_DOMAIN s, ## args) #define sr_spew(s, args...) sr_spew(DRIVER_LOG_DOMAIN s, ## args) #define sr_dbg(s, args...) sr_dbg(DRIVER_LOG_DOMAIN s, ## args) #define sr_info(s, args...) sr_info(DRIVER_LOG_DOMAIN s, ## args) #define sr_warn(s, args...) sr_warn(DRIVER_LOG_DOMAIN s, ## args) #define sr_err(s, args...) sr_err(DRIVER_LOG_DOMAIN s, ## args) /* Factors for the respective measurement mode (0 means "invalid"). */ static const float factors[8][8] = { {1e-4, 1e-3, 1e-2, 1e-1, 1e-5, 0, 0, 0}, /* V */ {1e-8, 1e-7, 0, 0, 0, 0, 0, 0}, /* uA */ {1e-6, 1e-5, 0, 0, 0, 0, 0, 0}, /* mA */ {1e-3, 0, 0, 0, 0, 0, 0, 0}, /* 22A */ {1e-4, 1e-3, 1e-2, 1e-1, 1, 0, 0, 0}, /* Manual A */ {1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Resistance */ {1e-2, 1e-1, 0, 1, 1e1, 1e2, 1e3, 1e4}, /* Frequency */ {1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */ }; static int parse_value(const uint8_t *buf, float *result) { int sign, intval; float floatval; /* * Bytes 1-5: Value (5 decimal digits) * * Over limit: "0L." on the display, "22580" as protocol "digits". * (chip max. value is 22000, so 22580 is out of range) * * Example: "OL.", auto-range mega-ohm mode * Hex: 36 32 32 35 38 30 33 31 30 30 32 30 0d 0a * ASCII: 2 2 5 8 0 */ if (!strncmp((const char *)&buf[1], "22580", 5)) { sr_spew("Over limit."); *result = INFINITY; return SR_OK; } else if (!isdigit(buf[1]) || !isdigit(buf[2]) || !isdigit(buf[3]) || !isdigit(buf[4]) || !isdigit(buf[5])) { sr_err("Value contained invalid digits: %02x %02x %02x %02x " "%02x (%c %c %c %c %c).", buf[1], buf[2], buf[3], buf[4], buf[5]); return SR_ERR; } intval = 0; intval += (buf[1] - '0') * 10000; intval += (buf[2] - '0') * 1000; intval += (buf[3] - '0') * 100; intval += (buf[4] - '0') * 10; intval += (buf[5] - '0') * 1; floatval = (float)intval; /* Note: The decimal point position will be parsed later. */ /* Byte 7: Sign bit (and other stuff) */ sign = ((buf[7] & (1 << 2)) != 0) ? -1 : 1; /* Apply sign. */ floatval *= sign; sr_spew("The display value is %f.", floatval); *result = floatval; return SR_OK; } static int parse_range(uint8_t b, float *floatval, const struct es51922_info *info) { int idx, mode; idx = b - '0'; if (!(idx >= 0 && idx <= 7)) { sr_dbg("Invalid range byte / index: 0x%02x / 0x%02x.", b, idx); return SR_ERR; } /* Parse range byte (depends on the measurement mode). */ if (info->is_voltage) mode = 0; /* V */ else if (info->is_current && info->is_micro) mode = 1; /* uA */ else if (info->is_current && info->is_milli) mode = 2; /* mA */ else if (info->is_current && !info->is_micro && !info->is_milli) mode = 3; /* 22A */ else if (info->is_current && !info->is_auto) mode = 4; /* Manual A */ else if (info->is_resistance) mode = 5; /* Resistance */ else if (info->is_frequency) mode = 6; /* Frequency */ else if (info->is_capacitance) mode = 7; /* Capacitance */ else { sr_dbg("Invalid mode, range byte was: 0x%02x.", b); return SR_ERR; } if (factors[mode][idx] == 0) { sr_dbg("Invalid factor for range byte: 0x%02x.", b); return SR_ERR; } /* Apply respective factor (mode-dependent) on the value. */ *floatval *= factors[mode][idx]; sr_dbg("Applying factor %f, new value is %f.", factors[mode][idx], *floatval); return SR_OK; } static void parse_flags(const uint8_t *buf, struct es51922_info *info) { /* Get is_judge and is_vbar early on, we'll need it. */ info->is_judge = (buf[7] & (1 << 3)) != 0; info->is_vbar = (buf[11] & (1 << 2)) != 0; /* Byte 6: Function */ switch (buf[6]) { case 0x3b: /* V */ info->is_voltage = TRUE; break; case 0x3d: /* uA */ info->is_auto = info->is_micro = info->is_current = TRUE; break; case 0x3f: /* mA */ info->is_auto = info->is_milli = info->is_current = TRUE; break; case 0x30: /* 22A */ info->is_current = TRUE; break; case 0x39: /* Manual A */ info->is_auto = FALSE; /* Manual mode */ info->is_current = TRUE; break; case 0x33: /* Resistance */ info->is_resistance = TRUE; break; case 0x35: /* Continuity */ info->is_continuity = TRUE; break; case 0x31: /* Diode */ info->is_diode = TRUE; break; case 0x32: /* Frequency / duty cycle */ if (info->is_judge) info->is_frequency = TRUE; else info->is_duty_cycle = TRUE; break; case 0x36: /* Capacitance */ info->is_capacitance = TRUE; break; case 0x34: /* Temperature */ info->is_temperature = TRUE; if (info->is_judge) info->is_celsius = TRUE; else info->is_fahrenheit = TRUE; /* IMPORTANT: The digits always represent Celsius! */ break; case 0x3e: /* ADP */ info->is_adp = TRUE; break; default: sr_err("Invalid function byte: 0x%02x.", buf[6]); break; } /* Byte 7: Status */ /* Bits [6:4]: Always 0b011 */ info->is_judge = (buf[7] & (1 << 3)) != 0; info->is_sign = (buf[7] & (1 << 2)) != 0; info->is_batt = (buf[7] & (1 << 1)) != 0; /* Battery low */ info->is_ol = (buf[7] & (1 << 0)) != 0; /* Input overflow */ /* Byte 8: Option 1 */ /* Bits [6:4]: Always 0b011 */ info->is_max = (buf[8] & (1 << 3)) != 0; info->is_min = (buf[8] & (1 << 2)) != 0; info->is_rel = (buf[8] & (1 << 1)) != 0; info->is_rmr = (buf[8] & (1 << 0)) != 0; /* Byte 9: Option 2 */ /* Bits [6:4]: Always 0b011 */ info->is_ul = (buf[9] & (1 << 3)) != 0; info->is_pmax = (buf[9] & (1 << 2)) != 0; /* Max. peak value */ info->is_pmin = (buf[9] & (1 << 1)) != 0; /* Min. peak value */ /* Bit 0: Always 0 */ /* Byte 10: Option 3 */ /* Bits [6:4]: Always 0b011 */ info->is_dc = (buf[10] & (1 << 3)) != 0; info->is_ac = (buf[10] & (1 << 2)) != 0; info->is_auto = (buf[10] & (1 << 1)) != 0; info->is_vahz = (buf[10] & (1 << 0)) != 0; /* Byte 11: Option 4 */ /* Bits [6:3]: Always 0b0110 */ info->is_vbar = (buf[11] & (1 << 2)) != 0; info->is_hold = (buf[11] & (1 << 1)) != 0; info->is_lpf = (buf[11] & (1 << 0)) != 0; /* Low pass filter on */ /* Byte 12: Always '\r' (carriage return, 0x0d, 13) */ /* Byte 13: Always '\n' (newline, 0x0a, 10) */ } static void handle_flags(struct sr_datafeed_analog *analog, float *floatval, const struct es51922_info *info) { /* * Note: is_micro etc. are not used directly to multiply/divide * floatval, this is handled via parse_range() and factors[][]. */ /* Measurement modes */ if (info->is_voltage) { analog->mq = SR_MQ_VOLTAGE; analog->unit = SR_UNIT_VOLT; } if (info->is_current) { analog->mq = SR_MQ_CURRENT; analog->unit = SR_UNIT_AMPERE; } if (info->is_resistance) { analog->mq = SR_MQ_RESISTANCE; analog->unit = SR_UNIT_OHM; } if (info->is_frequency) { analog->mq = SR_MQ_FREQUENCY; analog->unit = SR_UNIT_HERTZ; } if (info->is_capacitance) { analog->mq = SR_MQ_CAPACITANCE; analog->unit = SR_UNIT_FARAD; } if (info->is_temperature && info->is_celsius) { analog->mq = SR_MQ_TEMPERATURE; analog->unit = SR_UNIT_CELSIUS; } if (info->is_temperature && info->is_fahrenheit) { analog->mq = SR_MQ_TEMPERATURE; analog->unit = SR_UNIT_FAHRENHEIT; } if (info->is_continuity) { analog->mq = SR_MQ_CONTINUITY; analog->unit = SR_UNIT_BOOLEAN; *floatval = (*floatval < 0.0) ? 0.0 : 1.0; } if (info->is_diode) { analog->mq = SR_MQ_VOLTAGE; analog->unit = SR_UNIT_VOLT; } if (info->is_duty_cycle) { analog->mq = SR_MQ_DUTY_CYCLE; analog->unit = SR_UNIT_PERCENTAGE; } /* Measurement related flags */ if (info->is_ac) analog->mqflags |= SR_MQFLAG_AC; if (info->is_dc) analog->mqflags |= SR_MQFLAG_DC; if (info->is_auto) analog->mqflags |= SR_MQFLAG_AUTORANGE; if (info->is_hold) /* * Note: HOLD only affects the number displayed on the LCD, * but not the value sent via the protocol! It also does not * affect the bargraph on the LCD. */ analog->mqflags |= SR_MQFLAG_HOLD; if (info->is_max) analog->mqflags |= SR_MQFLAG_MAX; if (info->is_min) analog->mqflags |= SR_MQFLAG_MIN; if (info->is_rel) analog->mqflags |= SR_MQFLAG_RELATIVE; /* Other flags */ if (info->is_judge) sr_spew("Judge bit is set."); if (info->is_batt) sr_spew("Battery is low."); if (info->is_ol) sr_spew("Input overflow."); if (info->is_pmax) sr_spew("pMAX active, LCD shows max. peak value."); if (info->is_pmin) sr_spew("pMIN active, LCD shows min. peak value."); if (info->is_vahz) sr_spew("VAHZ active."); if (info->is_vbar) sr_spew("VBAR active."); if (info->is_lpf) sr_spew("Low-pass filter feature is active."); } static gboolean flags_valid(const struct es51922_info *info) { int count; /* Does the packet have more than one multiplier? */ count = 0; count += (info->is_nano) ? 1 : 0; count += (info->is_micro) ? 1 : 0; count += (info->is_milli) ? 1 : 0; /* Note: No 'kilo' or 'mega' bits per se in this protocol. */ if (count > 1) { sr_err("More than one multiplier detected in packet."); return FALSE; } /* Does the packet "measure" more than one type of value? */ count = 0; count += (info->is_voltage) ? 1 : 0; count += (info->is_current) ? 1 : 0; count += (info->is_resistance) ? 1 : 0; count += (info->is_frequency) ? 1 : 0; count += (info->is_capacitance) ? 1 : 0; count += (info->is_temperature) ? 1 : 0; count += (info->is_continuity) ? 1 : 0; count += (info->is_diode) ? 1 : 0; count += (info->is_duty_cycle) ? 1 : 0; if (count > 1) { sr_err("More than one measurement type detected in packet."); return FALSE; } /* Both AC and DC set? */ if (info->is_ac && info->is_dc) { sr_err("Both AC and DC flags detected in packet."); return FALSE; } return TRUE; } SR_PRIV gboolean sr_es51922_packet_valid(const uint8_t *buf) { struct es51922_info info; memset(&info, 0x00, sizeof(struct es51922_info)); parse_flags(buf, &info); if (!flags_valid(&info)) return FALSE; if (buf[12] != '\r' || buf[13] != '\n') { sr_spew("Packet doesn't end with \\r\\n."); return FALSE; } return TRUE; } /** * Parse a protocol packet. * * @param buf Buffer containing the protocol packet. Must not be NULL. * @param floatval Pointer to a float variable. That variable will contain the * result value upon parsing success. Must not be NULL. * @param analog Pointer to a struct sr_datafeed_analog. The struct will be * filled with data according to the protocol packet. * Must not be NULL. * @param info Pointer to a struct es51922_info. The struct will be filled * with data according to the protocol packet. Must not be NULL. * * @return SR_OK upon success, SR_ERR upon failure. Upon errors, the * 'analog' variable contents are undefined and should not be used. */ SR_PRIV int sr_es51922_parse(const uint8_t *buf, float *floatval, struct sr_datafeed_analog *analog, void *info) { int ret; struct es51922_info *info_local; info_local = (struct es51922_info *)info; if ((ret = parse_value(buf, floatval)) != SR_OK) { sr_err("Error parsing value: %d.", ret); return ret; } memset(info_local, 0x00, sizeof(struct es51922_info)); parse_flags(buf, info_local); handle_flags(analog, floatval, info_local); return parse_range(buf[0], floatval, info_local); }