/* * This file is part of the libsigrok project. * * Copyright (C) 2013 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "protocol.h" #include #define SERIALCOMM "115200/8n1" static const int32_t hwopts[] = { SR_CONF_CONN, SR_CONF_SERIALCOMM, }; static const int32_t hwcaps[] = { SR_CONF_LOGIC_ANALYZER, SR_CONF_SAMPLERATE, SR_CONF_TRIGGER_TYPE, SR_CONF_CAPTURE_RATIO, SR_CONF_LIMIT_SAMPLES, SR_CONF_EXTERNAL_CLOCK, SR_CONF_PATTERN_MODE, SR_CONF_SWAP, SR_CONF_RLE, }; #define STR_PATTERN_NONE "None" #define STR_PATTERN_EXTERNAL "External" #define STR_PATTERN_INTERNAL "Internal" /* Supported methods of test pattern outputs */ enum { /** * Capture pins 31:16 (unbuffered wing) output a test pattern * that can captured on pins 0:15. */ PATTERN_EXTERNAL, /** Route test pattern internally to capture buffer. */ PATTERN_INTERNAL, }; static const char *patterns[] = { STR_PATTERN_NONE, STR_PATTERN_EXTERNAL, STR_PATTERN_INTERNAL, }; /* Channels are numbered 0-31 (on the PCB silkscreen). */ SR_PRIV const char *ols_channel_names[NUM_CHANNELS + 1] = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", NULL, }; /* Default supported samplerates, can be overridden by device metadata. */ static const uint64_t samplerates[] = { SR_HZ(10), SR_MHZ(200), SR_HZ(1), }; SR_PRIV struct sr_dev_driver ols_driver_info; static struct sr_dev_driver *di = &ols_driver_info; static int init(struct sr_context *sr_ctx) { return std_init(sr_ctx, di, LOG_PREFIX); } static GSList *scan(GSList *options) { struct sr_config *src; struct sr_dev_inst *sdi; struct drv_context *drvc; struct dev_context *devc; struct sr_channel *ch; struct sr_serial_dev_inst *serial; GPollFD probefd; GSList *l, *devices; int ret, i; const char *conn, *serialcomm; char buf[8]; drvc = di->priv; devices = NULL; conn = serialcomm = NULL; for (l = options; l; l = l->next) { src = l->data; switch (src->key) { case SR_CONF_CONN: conn = g_variant_get_string(src->data, NULL); break; case SR_CONF_SERIALCOMM: serialcomm = g_variant_get_string(src->data, NULL); break; } } if (!conn) return NULL; if (serialcomm == NULL) serialcomm = SERIALCOMM; if (!(serial = sr_serial_dev_inst_new(conn, serialcomm))) return NULL; /* The discovery procedure is like this: first send the Reset * command (0x00) 5 times, since the device could be anywhere * in a 5-byte command. Then send the ID command (0x02). * If the device responds with 4 bytes ("OLS1" or "SLA1"), we * have a match. */ sr_info("Probing %s.", conn); if (serial_open(serial, SERIAL_RDWR | SERIAL_NONBLOCK) != SR_OK) return NULL; ret = SR_OK; for (i = 0; i < 5; i++) { if ((ret = send_shortcommand(serial, CMD_RESET)) != SR_OK) { sr_err("Port %s is not writable.", conn); break; } } if (ret != SR_OK) { serial_close(serial); sr_err("Could not use port %s. Quitting.", conn); return NULL; } send_shortcommand(serial, CMD_ID); /* Wait 10ms for a response. */ g_usleep(10000); sp_get_port_handle(serial->data, &probefd.fd); probefd.events = G_IO_IN; g_poll(&probefd, 1, 1); if (probefd.revents != G_IO_IN) return NULL; if (serial_read_blocking(serial, buf, 4) != 4) return NULL; if (strncmp(buf, "1SLO", 4) && strncmp(buf, "1ALS", 4)) return NULL; /* Definitely using the OLS protocol, check if it supports * the metadata command. */ send_shortcommand(serial, CMD_METADATA); if (g_poll(&probefd, 1, 10) > 0) { /* Got metadata. */ sdi = get_metadata(serial); sdi->index = 0; devc = sdi->priv; } else { /* Not an OLS -- some other board that uses the sump protocol. */ sr_info("Device does not support metadata."); sdi = sr_dev_inst_new(0, SR_ST_INACTIVE, "Sump", "Logic Analyzer", "v1.0"); sdi->driver = di; for (i = 0; i < 32; i++) { if (!(ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE, ols_channel_names[i]))) return 0; sdi->channels = g_slist_append(sdi->channels, ch); } devc = ols_dev_new(); sdi->priv = devc; } /* Configure samplerate and divider. */ if (ols_set_samplerate(sdi, DEFAULT_SAMPLERATE) != SR_OK) sr_dbg("Failed to set default samplerate (%"PRIu64").", DEFAULT_SAMPLERATE); /* Clear trigger masks, values and stages. */ ols_configure_channels(sdi); sdi->inst_type = SR_INST_SERIAL; sdi->conn = serial; drvc->instances = g_slist_append(drvc->instances, sdi); devices = g_slist_append(devices, sdi); serial_close(serial); return devices; } static GSList *dev_list(void) { return ((struct drv_context *)(di->priv))->instances; } static int cleanup(void) { return std_dev_clear(di, NULL); } static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; (void)cg; if (!sdi) return SR_ERR_ARG; devc = sdi->priv; switch (id) { case SR_CONF_SAMPLERATE: *data = g_variant_new_uint64(devc->cur_samplerate); break; case SR_CONF_CAPTURE_RATIO: *data = g_variant_new_uint64(devc->capture_ratio); break; case SR_CONF_LIMIT_SAMPLES: *data = g_variant_new_uint64(devc->limit_samples); break; case SR_CONF_PATTERN_MODE: if (devc->flag_reg & FLAG_EXTERNAL_TEST_MODE) *data = g_variant_new_string(STR_PATTERN_EXTERNAL); else if (devc->flag_reg & FLAG_INTERNAL_TEST_MODE) *data = g_variant_new_string(STR_PATTERN_INTERNAL); else *data = g_variant_new_string(STR_PATTERN_NONE); break; case SR_CONF_RLE: *data = g_variant_new_boolean(devc->flag_reg & FLAG_RLE ? TRUE : FALSE); break; default: return SR_ERR_NA; } return SR_OK; } static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; uint16_t flag; uint64_t tmp_u64; int ret; const char *stropt; (void)cg; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; devc = sdi->priv; switch (id) { case SR_CONF_SAMPLERATE: tmp_u64 = g_variant_get_uint64(data); if (tmp_u64 < samplerates[0] || tmp_u64 > samplerates[1]) return SR_ERR_SAMPLERATE; ret = ols_set_samplerate(sdi, g_variant_get_uint64(data)); break; case SR_CONF_LIMIT_SAMPLES: tmp_u64 = g_variant_get_uint64(data); if (tmp_u64 < MIN_NUM_SAMPLES) return SR_ERR; devc->limit_samples = tmp_u64; ret = SR_OK; break; case SR_CONF_CAPTURE_RATIO: devc->capture_ratio = g_variant_get_uint64(data); if (devc->capture_ratio < 0 || devc->capture_ratio > 100) { devc->capture_ratio = 0; ret = SR_ERR; } else ret = SR_OK; break; case SR_CONF_EXTERNAL_CLOCK: if (g_variant_get_boolean(data)) { sr_info("Enabling external clock."); devc->flag_reg |= FLAG_CLOCK_EXTERNAL; } else { sr_info("Disabled external clock."); devc->flag_reg &= ~FLAG_CLOCK_EXTERNAL; } ret = SR_OK; break; case SR_CONF_PATTERN_MODE: stropt = g_variant_get_string(data, NULL); ret = SR_OK; flag = 0xffff; if (!strcmp(stropt, STR_PATTERN_NONE)) { sr_info("Disabling test modes."); flag = 0x0000; }else if (!strcmp(stropt, STR_PATTERN_INTERNAL)) { sr_info("Enabling internal test mode."); flag = FLAG_INTERNAL_TEST_MODE; } else if (!strcmp(stropt, STR_PATTERN_EXTERNAL)) { sr_info("Enabling external test mode."); flag = FLAG_EXTERNAL_TEST_MODE; } else { ret = SR_ERR; } if (flag != 0xffff) { devc->flag_reg &= ~(FLAG_INTERNAL_TEST_MODE | FLAG_EXTERNAL_TEST_MODE); devc->flag_reg |= flag; } break; case SR_CONF_SWAP: if (g_variant_get_boolean(data)) { sr_info("Enabling channel swapping."); devc->flag_reg |= FLAG_SWAP_CHANNELS; } else { sr_info("Disabling channel swapping."); devc->flag_reg &= ~FLAG_SWAP_CHANNELS; } ret = SR_OK; break; case SR_CONF_RLE: if (g_variant_get_boolean(data)) { sr_info("Enabling RLE."); devc->flag_reg |= FLAG_RLE; } else { sr_info("Disabling RLE."); devc->flag_reg &= ~FLAG_RLE; } ret = SR_OK; break; default: ret = SR_ERR_NA; } return ret; } static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct dev_context *devc; GVariant *gvar, *grange[2]; GVariantBuilder gvb; int num_channels, i; (void)cg; switch (key) { case SR_CONF_SCAN_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, hwopts, ARRAY_SIZE(hwopts), sizeof(int32_t)); break; case SR_CONF_DEVICE_OPTIONS: *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t)); break; case SR_CONF_SAMPLERATE: g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates, ARRAY_SIZE(samplerates), sizeof(uint64_t)); g_variant_builder_add(&gvb, "{sv}", "samplerate-steps", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_TRIGGER_TYPE: *data = g_variant_new_string(TRIGGER_TYPE); break; case SR_CONF_PATTERN_MODE: *data = g_variant_new_strv(patterns, ARRAY_SIZE(patterns)); break; case SR_CONF_LIMIT_SAMPLES: if (!sdi) return SR_ERR_ARG; devc = sdi->priv; if (devc->flag_reg & FLAG_RLE) return SR_ERR_NA; if (devc->max_samples == 0) /* Device didn't specify sample memory size in metadata. */ return SR_ERR_NA; /* * Channel groups are turned off if no channels in that group are * enabled, making more room for samples for the enabled group. */ ols_configure_channels(sdi); num_channels = 0; for (i = 0; i < 4; i++) { if (devc->channel_mask & (0xff << (i * 8))) num_channels++; } grange[0] = g_variant_new_uint64(MIN_NUM_SAMPLES); grange[1] = g_variant_new_uint64(devc->max_samples / num_channels); *data = g_variant_new_tuple(grange, 2); break; default: return SR_ERR_NA; } return SR_OK; } static int set_trigger(const struct sr_dev_inst *sdi, int stage) { struct dev_context *devc; struct sr_serial_dev_inst *serial; uint8_t cmd, arg[4]; devc = sdi->priv; serial = sdi->conn; cmd = CMD_SET_TRIGGER_MASK + stage * 4; arg[0] = devc->trigger_mask[stage] & 0xff; arg[1] = (devc->trigger_mask[stage] >> 8) & 0xff; arg[2] = (devc->trigger_mask[stage] >> 16) & 0xff; arg[3] = (devc->trigger_mask[stage] >> 24) & 0xff; if (send_longcommand(serial, cmd, arg) != SR_OK) return SR_ERR; cmd = CMD_SET_TRIGGER_VALUE + stage * 4; arg[0] = devc->trigger_value[stage] & 0xff; arg[1] = (devc->trigger_value[stage] >> 8) & 0xff; arg[2] = (devc->trigger_value[stage] >> 16) & 0xff; arg[3] = (devc->trigger_value[stage] >> 24) & 0xff; if (send_longcommand(serial, cmd, arg) != SR_OK) return SR_ERR; cmd = CMD_SET_TRIGGER_CONFIG + stage * 4; arg[0] = arg[1] = arg[3] = 0x00; arg[2] = stage; if (stage == devc->num_stages) /* Last stage, fire when this one matches. */ arg[3] |= TRIGGER_START; if (send_longcommand(serial, cmd, arg) != SR_OK) return SR_ERR; return SR_OK; } static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) { struct dev_context *devc; struct sr_serial_dev_inst *serial; uint16_t samplecount, readcount, delaycount; uint8_t changrp_mask, arg[4]; int num_channels; int ret, i; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; devc = sdi->priv; serial = sdi->conn; if (ols_configure_channels(sdi) != SR_OK) { sr_err("Failed to configure channels."); return SR_ERR; } /* * Enable/disable channel groups in the flag register according to the * channel mask. Calculate this here, because num_channels is needed * to limit readcount. */ changrp_mask = 0; num_channels = 0; for (i = 0; i < 4; i++) { if (devc->channel_mask & (0xff << (i * 8))) { changrp_mask |= (1 << i); num_channels++; } } /* * Limit readcount to prevent reading past the end of the hardware * buffer. */ samplecount = MIN(devc->max_samples / num_channels, devc->limit_samples); readcount = samplecount / 4; /* Rather read too many samples than too few. */ if (samplecount % 4 != 0) readcount++; /* Basic triggers. */ if (devc->trigger_mask[0] != 0x00000000) { /* At least one channel has a trigger on it. */ delaycount = readcount * (1 - devc->capture_ratio / 100.0); devc->trigger_at = (readcount - delaycount) * 4 - devc->num_stages; for (i = 0; i <= devc->num_stages; i++) { sr_dbg("Setting stage %d trigger.", i); if ((ret = set_trigger(sdi, i)) != SR_OK) return ret; } } else { /* No triggers configured, force trigger on first stage. */ sr_dbg("Forcing trigger at stage 0."); if ((ret = set_trigger(sdi, 0)) != SR_OK) return ret; delaycount = readcount; } /* Samplerate. */ sr_dbg("Setting samplerate to %" PRIu64 "Hz (divider %u)", devc->cur_samplerate, devc->cur_samplerate_divider); arg[0] = devc->cur_samplerate_divider & 0xff; arg[1] = (devc->cur_samplerate_divider & 0xff00) >> 8; arg[2] = (devc->cur_samplerate_divider & 0xff0000) >> 16; arg[3] = 0x00; if (send_longcommand(serial, CMD_SET_DIVIDER, arg) != SR_OK) return SR_ERR; /* Send sample limit and pre/post-trigger capture ratio. */ sr_dbg("Setting sample limit %d, trigger point at %d", (readcount - 1) * 4, (delaycount - 1) * 4); arg[0] = ((readcount - 1) & 0xff); arg[1] = ((readcount - 1) & 0xff00) >> 8; arg[2] = ((delaycount - 1) & 0xff); arg[3] = ((delaycount - 1) & 0xff00) >> 8; if (send_longcommand(serial, CMD_CAPTURE_SIZE, arg) != SR_OK) return SR_ERR; /* Flag register. */ sr_dbg("Setting intpat %s, extpat %s, RLE %s, noise_filter %s, demux %s", devc->flag_reg & FLAG_INTERNAL_TEST_MODE ? "on": "off", devc->flag_reg & FLAG_EXTERNAL_TEST_MODE ? "on": "off", devc->flag_reg & FLAG_RLE ? "on" : "off", devc->flag_reg & FLAG_FILTER ? "on": "off", devc->flag_reg & FLAG_DEMUX ? "on" : "off"); /* 1 means "disable channel". */ devc->flag_reg |= ~(changrp_mask << 2) & 0x3c; arg[0] = devc->flag_reg & 0xff; arg[1] = devc->flag_reg >> 8; arg[2] = arg[3] = 0x00; if (send_longcommand(serial, CMD_SET_FLAGS, arg) != SR_OK) return SR_ERR; /* Start acquisition on the device. */ if (send_shortcommand(serial, CMD_RUN) != SR_OK) return SR_ERR; /* Reset all operational states. */ devc->rle_count = devc->num_transfers = 0; devc->num_samples = devc->num_bytes = 0; devc->cnt_bytes = devc->cnt_samples = devc->cnt_samples_rle = 0; memset(devc->sample, 0, 4); /* Send header packet to the session bus. */ std_session_send_df_header(cb_data, LOG_PREFIX); serial_source_add(serial, G_IO_IN, -1, ols_receive_data, cb_data); return SR_OK; } static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data) { (void)cb_data; abort_acquisition(sdi); return SR_OK; } SR_PRIV struct sr_dev_driver ols_driver_info = { .name = "ols", .longname = "Openbench Logic Sniffer", .api_version = 1, .init = init, .cleanup = cleanup, .scan = scan, .dev_list = dev_list, .dev_clear = NULL, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = std_serial_dev_open, .dev_close = std_serial_dev_close, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .priv = NULL, };